Protecting Your Nitrogen Fertilizer Investment

Recent rain and snow have brought much-needed precipitation to the northern Great Plains and upper Midwest regions. Some degree of drought conditions stretch from Alberta to Iowa, and agronomists and farmers are wondering the best ways to protect spring-applied nitrogen as the planting season continues. How much nitrogen might I lose if I cannot incorporate it? Does vertical tillage incorporate fertilizer enough? We have compiled some resources to help answer those questions.

There are three ways to lose fertilizer nitrogen: ammonia volatilization, denitrification, and nitrate leaching. In excessively wet soils, denitrification and nitrate leaching are a concern. However, for spring-applied nitrogen, ammonia volatilization is the main concern with dry soil conditions and unpredictable precipitation forecasts.

When you apply ammoniacal fertilizers (e.g. anhydrous ammonia, urea, UAN, ammonium sulfate) to the soil surface without sufficient incorporation, some amount of free ammonia (NH3) can escape to the atmosphere. Sufficient incorporation with tillage or precipitation is needed to safely protect that nitrogen investment below the soil surface. With dry soil conditions, this is important to remember because we must balance the need to protect nitrogen fertilizer while conserving soil water for seed germination and emergence.

Ammonia volatilization risk depends on soil and environmental factors (Table 1) and the nitrogen fertilizer source (Table 2). Typically, we are most concerned about ammonia volatilization for surface-applied urea or UAN. It is not easy to estimate how much nitrogen might be lost, and sometimes the losses can be substantial. Although you cannot change the soil type or weather forecast, you do have control over the nitrogen source and application method (Table 2) to protect your nitrogen investment.

Practices to reduce ammonia volatilization, in order of most effective: 

  • Apply urea in subsurface bands at least 3 inches below the soil surface. A shallow urea band (1 or 2 inches) acts like a slow-release anhydrous ammonia band, and nobody should ever apply anhydrous ammonia that shallow.
  • If nitrogen will be broadcast with incorporation, make sure the fertilizer is sufficiently incorporated at least 2 inches below the soil surface to ensure good soil coverage. A chisel plow or field cultivator is usually needed. The popularity of high-speed disks (vertical tillage) has led some people to think that it counts as a meaningful incorporation event. In reality, it just moves soil and crop residue around on the soil surface without really incorporating any fertilizer. Take a look after you run across the field and you will see white urea granules everywhere. There are soil-applied herbicide incorporation videos from the 1970s that show what a thorough incorporation job really requires.
  • If nitrogen will be broadcast without incorporation, try to time the fertilizer application right before rain (at least 0.3 inch of precipitation). Soils with good crop residue cover (no-till) may require more rain to sufficiently move urea or UAN into the soil surface.
  • If no rain is forecasted in the near future, consider applying a urease inhibitor on urea or UAN to provide temporary protection until rain arrives. The university research-proven urease inhibitor is NBPT, available in products like Agrotain (Koch) and its generic cousins. For generic products, make sure the active ingredient rate is 1.3 to 1.8 lb NBPT per ton of urea to ensure effective NBPT activity and protection. NBPT begins to breakdown after 7 to 14 days. In addition, it is important to remember that nitrification inhibitors like nitrapyrin and DCD do not protect against ammonia volatilization.

These practices should also be considered if you will be applying in-season nitrogen to corn or wheat later in the summer. it is always best to apply nitrogen below the soil surface, such as injected anhydrous ammonia or coulter-injected UAN, to protect nitrogen fertilizer. For surface-applied urea or UAN, you will want to time the fertilizer application just before a rainfall or consider NBPT to extend the rainfall window.

Helpful resources: 

Nitrogen extenders and additives for field crops (NDSU)

How long can NBPT-treated urea remain on the soil surface without loss? (NDSU)

Should you add inhibitors to your sidedress nitrogen application? (Univ. Minnesota)

Split the risk with in-season nitrogen (AGVISE Laboratories)

Adjusting high soil pH and salinity with sugar beet-processing spent lime

The sugar beet processing industry uses large quantities of fine-ground, high-grade calcium carbonate (lime) to purify sucrose in the sugar extraction process. The by-product spent lime retains high reactivity and purity, making it an attractive liming material for acidic soils. Application of spent lime is a common practice through the sugar beet producing areas of the upper Midwest and northern Great Plains, where its primary function is the suppression of the soil-borne disease Aphanomyces root rot of sugar beet. The spent lime also contains about 20 lb P2O5 per ton, mostly as organic phosphorus impurities gained from sugar refining.

We often get questions about correcting high soil pH and salinity with spent lime. Salt-affected soils, saline and sodic, are a common problem across the northern Great Plains. These soils have high soil pH and present numerous agronomic and soil management problems. The soil amendment gypsum (calcium sulfate) is often applied to sodic soils (those with high sodium) to combat soil swelling and dispersion. The spent lime (calcium carbonate) also contains calcium, but it is very insoluble at high soil pH.

Each year, we get many questions about applying spent lime on soils with high pH and salinity. To answer these questions, AGVISE Laboratories installed a long-term demonstration project in 2008 to evaluate adjusting high soil pH and salinity with spent lime. We applied multiple spent lime rates and tracked soil test levels over seven years. There were no significant changes or trends in soil pH (Table 1) or salinity (Table 2). This is no surprise because the initial soil pH was high and buffered around 7.8-8.2, indicating the presence of natural calcium carbonate. If the soil already contains naturally occurring lime, what is the good of adding more lime? Moreover, calcium carbonate is very insoluble, so there is no expectation that more lime will decrease or increase salinity.

Since soil test levels did not change over seven years, we terminated the project in 2014. The research question was a conclusive dud. While spent lime is useful to amend acidic soils and suppress Aphanomyces root rot of sugar beet, it does not help on soils with high pH or salinity.

 

 

Table 1. Soil pH (1:1) following sugar beet-processing spent lime application on high pH soil.
Spent Lime Year Average
2008 2009 2010 2011 2012 2013 2014
ton/acre
1 7.8 7.7 7.9 7.8 7.7 8.0 8.0 7.80
2 7.9 7.9 8.1 7.9 7.9 8.0 8.0 7.94
3 7.9 7.9 8.1 7.9 7.9 8.1 8.1 7.95
4 7.8 7.8 7.9 7.7 7.8 8.1 8.0 7.85
5 7.8 7.8 8.0 7.9 7.9 8.0 8.0 7.90
6 8.0 7.9 8.2 8.0 8.0 8.1 8.1 8.00
Spent lime applied and incorporated September 2008. Soil sampled in fall.

 

Table 2. Soil salinity (electrical conductivity, EC 1:1) following sugar beet-processing spent lime application on moderately saline soil.
Spent Lime Year
2008 2009 2010 2011 2012 2013 2014
ton/acre ——————— dS/m ———————
1 1.5 1.2 1.8 1.1 1.6 1.2 1.8
2 1.9 2.1 2.3 2.5 2.3 2.0 2.0
3 1.9 2.2 2.6 2.5 2.4 1.9 1.9
4 1.0 1.3 1.4 1.2 1.5 1.9 1.9
5 1.7 2.2 2.2 2.3 2.2 1.7 1.7
6 2.6 2.1 2.1 2.9 2.5 1.9 1.9
Spent lime applied and incorporated September 2008. Soil sampled in fall.

Uffda, that’s a lot of potash!

Question: Can you really change the %K base cation saturation ratio?

This winter, we have gotten more questions from farmers asking about the base cation saturation ratio (BSCR) concept. The farmers had attended a series of meetings where the speakers encouraged farmers increase the %K saturation in their soils and apply high potassium fertilizer rates to soils, even though there was little to no chance to get a crop yield response. In short, the BSCR concept revolves around reaching a certain percentage (%) of each base cation in your soil to obtain the “ideal” soil. If you do not have the right percentage of each cation, then you are instructed to apply large amounts of fertilizer to reach this “ideal” balance of each cation. Potassium is the most common nutrient where people fall into the BSCR trap, often suggesting that extra potassium will “fix” their soil.

Since the 1940s, university and industry researchers from around the world have thoroughly debunked the BCSR concept. But sometimes, you just need to show people how this works in the real world to get their attention. To help farmers see the silliness of the BSCR concept, we conducted a simple field project in 2015 to show just one flaw in the failed BSCR concept, focusing on its primary claim that you can actually change the %K saturation in soil. We identified three soils in Manitoba, Minnesota, and North Dakota with low initial %K saturation. The goal was to increase %K saturation into the 4 to 6% range, which is recommended by BCSR promoters. We applied a staggering rate of 1000 lb/acre K2O (1666 lb/ acre potassium chloride, KCl, 0-0-60). You are probably thinking that 1000 lb/acre K2O is a lot of potash! And so did we. We called the project the “uffda” project because my Norwegian grandfather, who farmed in southern Minnesota 60 years ago, would have looked at the high rate and said, “Uffda, that’s a lot of potash!”

But, we failed to achieve the “ideal” 4 to 6% K saturation (Table 1). As expected, soil test K (part per million, ppm) increased substantially, but the %K saturation did not reach the “ideal” soil range even with the enormous potassium fertilizer rate.

Table 1. Soil test potassium and potassium base saturation after application of 1000 lb/acre K2O (1666 lb/acre potassium chloride, KCl, 0-0-60).
Location Soil test K, ppm K saturation, %
initial final initial final
Northwood, ND 156 430 0.6 1.6
Benson, MN 154 290 1.9 3.7
Roseisle, MB 50 330 0.4 2.8

Do you need more proof? Let’s see what the plants said. The soybean plant tissue K concentrations did not change either because the soil test K (ppm) was sufficient and above the 150 ppm critical level (Table 2). Simply put, the proven university-developed soil fertility guidelines would have told you that more potassium was not needed. I know a few farmers who were convinced to follow the BCSR concept, which only wasted their valuable dollars and time on the failed idea.

Table 2. Soybean leaf potassium concentration did not increase with additional potassium fertilizer applied on soils with soil test potassium above the critical level (150 ppm).
Fertilizer K Rate Soybean leaf K, %
lb/acre K2O Northwood, ND

STK 150 ppm

Benson, MN

STK 190 ppm

0 3.2 1.9
20 2.6 1.8
100 2.7 1.8
200 3.0 1.8
1000 2.6 1.9
Soybean leaf K sufficiency level = 1.7 %K

All things considered, there are still good reasons to apply potassium fertilizer (moderate rates) to achieve profitable yield responses. Either way, the base cation saturation ratio (BCSR) concept is a really bad way to justify potassium fertilizer use, and it usually leads to very high fertilizer rates and costs. Here are some good reasons to include potassium in your soil fertility program:

  • Soil test K below 150 ppm (grid or zone soil test)
  • Soil test K below 200 ppm (composite soil test, high soil variability)
  • History of low plant tissue K when no potassium fertilizer is applied; potential compaction
  • Replicated strip trials showing profitable crop yield response to moderate potassium fertilizer rates
  • Chloride required for small grains; potassium chloride (0-0-60-50Cl) is the most common chloride source

Starter Fertilizer Display: How low can YOU go?

When profits are squeezed, more farmers are asking about optimal starter fertilizer rates and how low starter fertilizer rates can be. These questions are the result of wanting to keep fertilizer costs down, to plant as many acres per day as possible, and to take advantage of more efficient, lower rates of banded phosphorus fertilizer compared to higher rates of broadcast phosphorus fertilizer.

To illustrate the role of starter fertilizer rates and seed placement, we put together displays showing the distance between fertilizer granules or droplets at various rates and row spacings. You can see several pictures with canola, corn, soybean, sugar beet, and wheat. We greatly thank John Heard with Manitoba Agriculture for helping with the displays.

The displays show the normal seed spacing for several crops with different dry or liquid fertilizer rates alongside the seed. These displays help visualize the distance between the seed and fertilizer at several rates. University research shows that to achieve the full starter effect, a fertilizer granule or droplet must be within 1.5-2.0 inches of each seed. If the fertilizer granule or droplet is more than 1.5-2.0 inches away from the seed, the starter effect is lost. Some people wonder about these displays, but you can prove it to yourself pretty easily. Just run the planter partially down on a hard surface at normal planting speed. You will see what you imagine as a constant stream of liquid fertilizer, ends up being individual droplets at normal speed, especially with narrow row spacings and lower fertilizer rates.

These displays help illustrate the minimum starter fertilizer rate to maintain fertilizer placement within 1.5-2.0 inches of each seed for the full starter effect. In addition to an adequate starter fertilizer rate, additional phosphorus and potassium should be applied to prevent nutrient mining, causing soil test levels to decline in years when minimum fertilizer rates are applied.

Adjusting low soil pH with sugar beet-processing spent lime

The sugar beet processing industry uses large quantities of fine-ground, high-grade calcium carbonate (lime) to purify sucrose in the sugar extraction process. The by-product spent lime retains high reactivity and purity, making an attractive liming material for acidic soils. Application of spent lime is a common practice through the sugar beet producing areas of the upper Midwest and northern Great Plains, where its primary function is the suppression of the soil-borne disease Aphanomyces root rot of sugar beet. The spent lime also contains about 20 lb P2O5 per ton, mostly as organic phosphorus impurities gained from sugar refining.

AGVISE Laboratories installed a long-term demonstration project in 2014 to evaluate adjusting low soil pH with spent lime. The project site was located near our Northwood Laboratory. Northwood lies along the beachline of glacial Lake Agassiz, where well-drained coarse-textured soils with low pH are common. We located a very acidic soil with soil pH 4.7 (0-6 inch), which was the perfect site to evaluate lime application. In May 2014, spent lime was applied and incorporated with rototiller. The spent lime quality was very high at 1,500 lb ENP/ton. In Minnesota, lime quality is measured as effective neutralizing power (ENP), which measures lime purity and fineness. Soil pH was tracked over three years (Table 1).

The lowest spent lime rate (2,500 lb ENP/acre) increased soil pH above 5.5. This soil pH reduced aluminum toxicity risk, but it did not reach the target pH 6.0, appropriate for corn-soybean rotation. The highest spent lime rate (10,000 lb ENP/acre) increased soil pH above 7.0 and maintained soil pH for several years. Spent lime is a fine-ground material with high reactivity, so its full effects were seen in the first application year. The project showed that spent lime is an effective liming material for low pH soils.

Table 1. Soil pH (1:1) following sugar beet-processing spent lime application on low pH soil.
Spent Lime Year
May 2014 Sept 2014 July 2015 June 2016
lb ENP/acre
0 4.8 4.8 4.7 5.1
2,500 4.8 5.5 5.2 5.4
5,000 4.8 5.6 5.7 5.5
10,000 4.8 7.4 7.0 7.4
Spent lime applied and incorporated September 2008. Soil sampled in fall.

High soil pH and calcium carbonate inflate base cation saturation and cation exchange capacity (CEC)

Soil pH is a soil chemical property that measures soil acidity or alkalinity, and it affects many soil chemical and biological activities. Soils of the northern Great Plains and Canadian Prairies often have high soil pH (>7.3) and contain calcium carbonate (free lime) at or near the soil surface. It is the calcium carbonate in soil that maintains high soil pH and keeps it buffered around pH 8.0. The calcium carbonate originates from soil formation processes since the latest glacial period.

Soils with high pH and calcium carbonate create analytical challenges in determining cation exchange capacity (CEC) and subsequent base cation saturation ratio (BCSR) calculations. Cation exchange capacity is the amount of positive-charged cations (e.g. ammonium, calcium, hydrogen, magnesium, potassium, sodium) held on negative-charged soil particles, like clay and organic matter. Fine-textured soils (high clay content) and organic soils (high organic matter content) have high CEC, while coarse-textured soils (low clay content) have low CEC. The BSCR is the relative proportion of base cations in soil.

The routine laboratory method to determine CEC is the summation method, where all extractable cations on soil particles are added together. The assumption is that all positive-charged cations extracted are held on negative-charged exchange sites on soil particles. The assumption falls apart in soils with pH > 7.3 because the soil test method also extracts calcium from the naturally occurring soil mineral calcium carbonate, which is not held on cation exchange sites. The resulting amount of extractable calcium is inflated. The summation procedure still sums together the inflated calcium result, producing an inaccurate and inflated CEC result. Any subsequent base cation saturation calculations are similarly flawed.

To illustrate the inflated CEC problem, AGVISE Laboratories conducted a laboratory experiment. The experiment showed that more calcium carbonate in soil increased the amount of extractable calcium (Table 1). Furthermore, the inflated amount of extracted calcium also inflated the CEC because all the extractable cations are summed together. The correct CEC is 24 cmolc/kg, yet the inflated CEC could be 150 to 200% higher with increasing calcium carbonate content. Adding calcium carbonate to soil did not increase the inherent CEC sources, i.e. clay and organic matter, yet the laboratory CEC result increased. In reality, the ability to hold more cations did not change. This highlights the analytical challenge in determining CEC via summation method on soils with high pH and calcium carbonate.

Table 1. Effect of calcium carbonate addition on extractable cations and cation exchange capacity.
Calcium carbonate equivalent (CCE) pH EC Ca Mg K Na CEC
% dS/m —————– ppm —————– cmolc/kg
0 7.5 0.43 3350 730 220 45 24
1 7.6 0.51 6150 730 220 50 37
5 7.7 0.52 7480 720 215 45 44
10 7.8 0.50 7240 650 180 40 42
Abbrev.: pH (1:1); EC, electrical conductivity (1:1); Ca, calcium; Mg, magnesium; K, potassium; Na, sodium; CEC, cation exchange capacity via summation of cations.

The subsequent base cation saturation calculations were also affected, showing much lower percent potassium saturation as calcium carbonate content increased (Table 2). This presents a major challenge in using the base cation saturation ratio (BCSR) concept to guide soil fertility and plant nutrition on soils with high pH and calcium carbonate. Without an accurate analytical method, the BCSR concept loses its grounding and any practical application.

Table 2. Effect of calcium carbonate addition on base cation saturation ratio and cation exchange capacity.
Calcium carbonate equivalent (CCE) Ca sat. Mg sat. K sat. Na sat. CEC
% ————————– % ————————– cmolc/kg
0 71 26 2.4 0.8 24
1 82 16 1.5 0.6 37
5 85 14 1.2 0.4 44
10 86 13 1.1 0.4 42
Abbrev.: Ca, calcium; Mg, magnesium; K, potassium; Na, sodium; CEC, cation exchange capacity via summation of cations.

In general, the routine CEC method via summation of cations is quite accurate on soils with pH less than 7.3 and no calcium carbonate. However, the routine method has clear challenges on soils with pH greater than 7.3. The resulting CEC and subsequent base cation saturation calculations are inflated and/or flawed. This is why the BCSR concepts is extremely misleading on soils with high pH.

Adjusting high soil pH with elemental sulfur

Soil pH is a soil chemical property that measures soil acidity or alkalinity, and it affects many soil chemical and biological activities. Soils with high pH can reduce the availability of certain nutrients, such as phosphorus and zinc. Soils of the northern Great Plains and Canadian Prairies often have high soil pH (>7.3) and contain calcium carbonate (free lime) at or near the soil surface. It is the calcium carbonate in soil that maintains high soil pH and keeps it buffered around pH 8.0. The calcium carbonate originates from soil formation processes since the latest glacial period.

An unfounded soil management suggestion is that soil pH can be successfully reduced by applying moderate rates of elemental sulfur (about 100 to 200 lb/acre elemental S). Elemental sulfur must go through a transformation process called oxidation, converting elemental sulfur (S0) to sulfuric acid (H2SO4), a strong acid. Sulfuric acid does lower soil pH, but the problem is the amount of carbonate in the northern region, which commonly ranges from 1 to 5% CCE and sometimes over 10% CCE. Soils containing carbonate (pH >7.3) will require A LOT of elemental sulfur to neutralize carbonate before it can reduce soil pH.

To lower pH in soils containing carbonate, the naturally-occurring carbonate must first be neutralized by sulfuric acid generated from elemental sulfur. You can visualize the fizz that takes place when you pour acid on a soil with carbonate. That fizz is the acid reacting with calcium carbonate to produce carbon dioxide (CO2) gas. Once all calcium carbonate in soil has been neutralized by sulfuric acid, only then can the soil pH be lowered permanently. It is important to note that sulfate-sulfur sources, such as gypsum (calcium sulfate, CaSO4), do not create sulfuric acid when they react with soil, so they cannot neutralize calcium carbonate or change soil pH (Figure 1).

Figure 1. Soil pH following gypsum application on soil with high pH and calcium carbonate.

In 2005, AGVISE Laboratories installed a long-term demonstration project evaluating elemental sulfur and gypsum on a soil with pH 8.0 and 2.5% calcium carbonate equivalent (CCE). The highest elemental sulfur rate was 10,000 lb/acre (yes, 5 ton/acre)! We chose such a high rate because the soil would require a lot of elemental sulfur to neutralize all calcium carbonate. Good science tells us that 10,000 lb/acre elemental sulfur should decrease soil pH temporarily, but it is still not enough to lower soil pH permanently. In fact, this is exactly what we saw (Figure 2). Soil pH declined in the first year, but it returned to the initial pH over subsequent years because the amount of elemental sulfur was not enough to neutralize all calcium carbonate.

Figure 2. Soil pH following elemental sulfur application on soil with high pH and calcium carbonate.

A quick calculation showed that the soil with 2.5% CCE would require about 16,000 lb/acre elemental sulfur to neutralize all calcium carbonate in the topsoil. Such high rates of elemental sulfur are both impractical and expensive on soils in the northern Great Plains. The only thing to gained is a large bill for elemental sulfur. While high soil pH does lower availability of phosphorus and zinc, you can overcome these limitations with banded phosphorus fertilizer and chelated zinc on sensitive crops. All in all, high soil pH is manageable with the appropriate strategy. That strategy does not involve elemental sulfur.

Fertilizing grass lawn

A productive and lush lawn requires some fertilizer every now and then. The major plant nutrients required for grass lawn are nitrogen (N), phosphorus (P), and potassium (K). Nitrogen is the nutrient required in the largest amount, although too much nitrogen can create other problems. A general rate of one (1) pound nitrogen per 1,000 square feet is adequate for most grass lawns, but some more intensively managed lawns may require more nitrogen. The total annual nitrogen budget should be split through the year according to season (Table 1). Common cool-season grasses in lawn mixtures include Kentucky bluegrass, ryegrass, and fescues.

Table 1. Nitrogen fertilizer guidelines for established cool-season grass lawn.
Maintenance Intensity Early Spring

Mar – Apr

Spring

May – June

Summer

July – Aug

Early Autumn

Sept

Total Annual N
————————- lb nitrogen per 1000 square feet ————————-
Low,

no irrigation

0.5 0.5 0 0.5 1.5
Medium,

with irrigation

0.5 1.0 0.5 1.0 2.0
High,

with irrigation

0.5 1.0 1.0 2.0 4.5
Source: Bigelow, C. A., J. J. Camberato, and A. J. Patton. 2013. Fertilizing established cool-season lawns: Maximizing turf health with environmentally responsible programs. Purdue Univ. Ext. Circ. AY-22-W. Purdue Univ., West Lafayette, IN.

The nutrient application rates given in Table 1 are the actual nutrient rates. To calculate how much fertilizer product you require, you will convert the nutrient rate to fertilizer rate, using the labelled fertilizer analysis. The fertilizer analysis label reports the nitrogen-phosphorus-potassium concentration of the fertilizer product. A product with 12-4-8 analysis contains 12% N, 4% P2O5, and 8% K2O. To convert 1.0 lb N/1000 sq. ft, you divide the nutrient requirement by the fertilizer analysis (12% N), thus 1.0/0.12 equals 8.3 lb fertilizer/1000 sq. ft. The application rate of 12-4-8 fertilizer is 8.3 lb/1000 sq. ft.

A soil containing ample nitrogen may require less nitrogen fertilizer. If soil test nitrogen is more than 50 lb/acre nitrate-N (0 to 6 inch soil depth), the next nitrogen fertilization may be skipped. The soil test nitrogen value of 50 lb/acre nitrate-N is equal to 1.0 lb/1000 sq. ft nitrate-N.

Late fall is an optimal time to fertilize lawn, when grass growth has nearly stopped but before winter dormancy. Avoid fertilizing during hot summer months (July and August), unless you have ample irrigation. Controlled-release nitrogen fertilizer products applied in May and September help prolong nitrogen release to grass during critical growth periods in spring and fall.

Split the Risk with In-season Nitrogen

For some farmers, applying fertilizer in the fall is a standard practice. You can often take advantage of lower fertilizer prices, reduce the spring workload, and guarantee that fertilizer is applied before planting. As you work on developing your crop nutrition plan, you may want to consider saving a portion of the nitrogen budget for in-season nitrogen topdress or sidedress application.

Some farmers always include topdressing or sidedressing nitrogen as part of their crop nutrition plan. These farmers have witnessed too many years with high in-season nitrogen losses, usually on sandy or clayey soils, through nitrate leaching or denitrification. Split-applied nitrogen is one way to reduce early season nitrogen loss, but do not delay too long before rapid crop nitrogen uptake begins.

Short-season crops, like small grains or canola, develop quickly. Your window for topdress nitrogen is short, so earlier is better than later. To maximize yield in small grains, apply all topdress nitrogen before jointing (5-leaf stage). Any nitrogen applied after jointing will mostly go to grain protein. In canola, apply nitrogen during the rosette stage, before the 6-leaf stage. For topdressing, the most effective nitrogen sources are broadcast NBPT-treated urea (46-0-0) or urea-ammonium nitrate (UAN, 28-0-0) applied through streamer bar (limits leaf burn). Like any surface-applied urea or UAN, ammonia volatilization is a concern. An effective urease inhibitor (e.g. Agrotain, generic NBPT) offers about 7 to 10 days of protection before rain can hopefully incorporate the urea or UAN into soil.

Long-season crops, like corn or sunflower, offer more time. Rapid nitrogen uptake in corn does not begin until after V6 growth stage. The Presidedress Soil Nitrate Test (PSNT), taken when corn is 6 to 12 inches tall, can help you decide the appropriate sidedress nitrogen rate. Topdress NBPT-treated urea is a quick and easy option when corn is small (before V6 growth stage). After corn reaches V10 growth stage, you should limit the topdress urea rate to less than 60 lb/acre (28 lb/acre nitrogen) to prevent whorl burn.

Sidedress nitrogen provides great flexibility in nitrogen sources and rates in row crops like corn, sugarbeet, or sunflower. Sidedress anhydrous ammonia can be safely injected between 30-inch rows. Anhydrous ammonia is not recommended in wet clay soils because the injection trenches do not seal well. Surface-dribbled or coulter-injected UAN can be applied on any soil texture. Surface-dribbled UAN is vulnerable to ammonia volatilization until you receive sufficient rain, so injecting UAN below the soil surface helps reduce ammonia loss. Injecting anhydrous ammonia or UAN below the soil surface also reduces contact with crop residue and potential nitrogen immobilization.

An effective in-season nitrogen program starts with planning. In years with substantial nitrogen loss, a planned in-season nitrogen application is usually more successful than a rescue application. If you are considering split-applied nitrogen for the first time, consider your options for nitrogen sources, application timing and workload, and application equipment. Split-applied nitrogen is another tool to reduce nitrogen loss risk and maximize yield potential.

AGVISE Potato Petiole Analysis: Informative, Accessible, and Easy-to-Understand Reports

For potato petiole analysis article

Irrigated potato production is an intensive cropping system. It requires proactive labor, critical decision-making tools, and well-timed nutrient management. There is a fine line between supplying adequate plant nutrition and applying too much, which could cause potato tuber defects like mishappen tubers or hollow heart, reducing the marketable potato yield.

Before seed potatoes go in the ground, potato agronomists begin with a good soil fertility plan based on precision soil sampling (grid or zone). Once potatoes have emerged, the next step is monitoring the soil and plant nutrient status to ensure the potato crop has no deficient or excess nutritional problems. The in-season monitoring is done with paired potato petiole and soil samples. The petiole and soil sampling starts about 30 days after emergence, then taken every week during the growing season.

A successful in-season potato monitoring program requires fast turnaround and reliable service on petiole and soil samples. This is where AGVISE Laboratories has excelled in serving the potato industry because we know the petiole and soil test results will be used immediately to make fertilizer and irrigation decisions on the fly. To make the data immediately available, the petiole and soil test results are posted online to the AGVISE website with next-day turnaround after the samples arrive at the laboratory.

It is also critical that the petiole and soil test results are easy to interpret and understandable to everyone on the agronomy staff. The AGVISE petiole and soil test report displays results in a graphic format, enabling agronomists to quickly evaluate plant nutrient levels and watch trends over the growing season. An example potato petiole and soil nutrient report is shown below. The report includes a weekly graph of petiole nitrate, phosphorus, and potassium alongside with soil ammonium- and nitrate-nitrogen.

For most irrigated potato producers, weekly potato petiole sampling is a given. But, an increasing number are also including soil samples for ammonium- and nitrate-nitrogen analysis each week. The soil nitrogen data is critical for timing an in-season nitrogen application. There are periods where very fast potato vegetative growth can cause unusually low petiole nitrate-nitrogen levels. The soil nitrogen data prevents overreaction to low petiole nitrate-nitrogen levels and avoids application of extra nitrogen, which could create potential tuber quality issues down the road.

AGVISE Laboratories has provided potato petiole and soil analysis services to the potato industry in the United States and Canada for over 40 years. In 2020, we analyzed over 12,000 potato petiole samples for potato growers at our Northwood, ND and Benson, MN laboratories. We know that timely information is important to our customers, and we are always making improvements to our service and support. If you have any questions, please talk with one of our agronomists or soil scientists about getting started with potato petiole analysis.

For potato petiole article