Lessons (Ghosts) of Droughts Past

From Alberta to Iowa, the region has experienced everything from abnormally dry soil conditions to exceptional drought. In some places, the drought started in 2020 and has continued through 2021. Considering lower than expected crop yields, we expect that residual soil nitrate-nitrogen levels will be much higher than normal in many wheat, canola, and corn fields this fall. There was reduced crop nitrogen uptake and little to no soil nitrogen losses to leaching or denitrification through the growing season, which should result in higher soil test nitrate-N remaining in the soil profile.

In major drought years, high residual nitrate levels are a normal phenomenon. In 1988, the average soil nitrate test following wheat across the region was a staggering 107 lb/acre nitrate-N (0-24 inch soil profile). This is considerably higher than the long-term average around 30-45 lb/acre nitrate-N (0-24 inch soil profile). The 1988 drought was extreme, and 2021 has rivaled that in some locations. Based on previous drought years, it will be no surprise to find wheat fields with 80-100 lb/acre nitrate-N (0-24 inch soil profile) or even higher.

Past experience also shows us that drought can create greater crop yield variability across fields. Some zones in the field with better water holding capacity and soil organic matter may have produced a decent crop yield, and these will have lower residual soil nitrate-N. Yet, other zones may have had very poor crop growth and yield, leaving very high amounts of soil nitrate-N remaining.

Zone soil sampling is always a good idea, but it is especially important in drought years. Soil sampling based on productivity zones is the only way to determine the correct amount of nitrogen fertilizer in each zone across the field. To create good productivity zones for soil sampling, it is best to use multiple data layers such as satellite imagery, crop yield maps, topography, or electrical conductivity (Veris or EM38).

This fall, we expect residual soil nitrate-N to be higher than normal, but there will be exceptions to the rule. Last spring, there was a lot of broadcast urea fertilizer applied without incorporation. If no rain was received for several weeks after application, much of the nitrogen could have been lost to ammonia volatilization. This means some fields will seem out of place with lower residual soil nitrate-nitrogen because fertilizer nitrogen was lost last spring.

For fields with more than 150 lb/acre nitrate-N (0-24 inch soil profile), the crop nitrogen requirement for next year may not call for much, if any, nitrogen fertilizer. We must remember that drought creates variability within a field and even within large productivity zones. This is why we always suggest applying a base amount of nitrogen fertilizer to address the variability, even if the soil nitrate test is more than 150 lb/acre nitrate-N. A base nitrogen fertilizer rate (maybe 20 to 40 lb/acre N) should address most of the field variability and provide a fast start to the next year’s crop. In 1988, we learned the tough lesson that applying no nitrogen fertilizer on fields testing very high for nitrate-N was a mistake, and the best producing parts of fields had early-season nitrogen deficiencies. A modest base nitrogen fertilizer rate was the right decision to cover field variability.

Three Simple Lessons from Droughts Past

  1. Soil test all fields for residual soil nitrate-N. There will be considerable variability from field to field and even zone to zone.
  2. The residual soil nitrate-N test allows you to reduce nitrogen fertilizer rates for next year, saving money on crop inputs for 2022.
  3. Remember to apply a modest base nitrogen fertilizer rate on fields testing very high in nitrate-N to address field variability. You will want to get next year’s crop started right.

Sidedress Corn Using the Pre-sidedress Soil Nitrate Test (PSNT)

As the corn crop begins to emerge, it is time to prepare for sidedress nitrogen applications. Sidedress nitrogen for corn can be applied any time after planting, but the target window is generally between growth stages V4 and V8, before rapid plant nitrogen uptake occurs. Split-applied nitrogen has become a standard practice in corn to reduce in-season nitrogen losses on vulnerable soils, such as sandy and clayey soils. More and more farmers now include topdress or sidedress nitrogen as part of their standard nitrogen management plan. These farmers have witnessed too many years with high in-season nitrogen losses through nitrate leaching or denitrification.

The target timing for PSNT sampling is when corn is 6 to 12″ tall. Twelve-inch corn is often V4 or V5 (like in the picture above). Do not hesitate in collecting soil samples for the PSNT; the target window for sidedress-nitrogen applications in corn is between the V4 and V8 stages. 

Whether your nitrogen management plan includes a planned sidedress nitrogen application or not, the Pre-Sidedress Soil Nitrate Test (PSNT) is one tool to help make decisions about in-season nitrogen. You may also hear this test called the Late-Spring Soil Nitrate Test (LSNT) in Iowa. PSNT is an in-season soil nitrate test taken during the early growing season to determine if additional nitrogen fertilizer is needed. PSNT helps assess available soil nitrate-nitrogen prior to rapid plant nitrogen uptake and the likelihood of crop yield response to additional nitrogen.

The Pre-sidedress Soil Nitrate Test (PSNT), taken when corn is 6 to 12 inches tall, can help you decide the appropriate sidedress nitrogen rate. The PSNT requires a 0-12 inch depth soil sample taken when corn plants are 6 to 12 inches tall (at the whorl), usually in late May or early June. Late-planted corn may not reach that height before mid-June, but PSNT soil samples should still be collected during the first two weeks of June. The recommend soil sampling procedure requires 16 to 24 soil cores taken randomly through the field, staggering your soil cores across the row as you go. All soil cores should be placed in the soil sample bag and submitted to the laboratory within 24 hours or stored in the refrigerator.

You can submit PSNT soil samples using the online AGVISOR program by choosing the “Corn Sidedress N” crop choice and submitting a 0-12 inch soil sample for nitrate analysis. AGVISOR will generate sidedress nitrogen fertilizer guidelines, using the PSNT critical level of 25 ppm nitrate-N (0-12 inch depth). If PSNT is greater than 25 ppm nitrate-N, then the probability of any corn yield response to additional nitrogen is low. If spring rainfall was above normal, then the PSNT critical level of 20 to 22 ppm nitrate-N (0-12 inch depth) should be used. Iowa State University provides additional PSNT interpretation criteria for excessive rainfall, manured soils, and corn after alfalfa.

If the PSNT is taken after excessive rainfall, the soil cores will be wet and difficult to mix in the field. Therefore, it is best to send all soil cores to the laboratory to be dried and ground, ensuring a well-blended soil sample for analysis. Although in-field soil nitrate analyzers have improved over the years, the difficult task of blending wet, sticky soil cores in the field still remains. The only way to get accurate, repeatable soil analysis results is to dry, grind, and blend the entire soil sample in the laboratory before analysis. AGVISE provides 24-hour turnaround on PSNT soil samples. The soil samples are analyzed and reported the next business day after arrival. Soil test results are posted on the online AGVISOR program for quick and easy access. With AGVISE, you get not only great service but also the highest quality data with four decades of soil testing experience.

Pre-Sidedress Soil Nitrate Test (PSNT) resources

Please call our technical support staff if you have any questions on PSNT and interpreting the soil test results for sidedress nitrogen application.

Preparing for Spring Soil Sampling

Even when fall soil sampling weather cooperates, there is always some soil sampling to do each spring. No matter the spring conditions, the soil sampling window is tight if you are planning to collect soil samples and get the soil test results back in time for spring fertilizer decisions. You will want to pull soil samples before the field will carry a pickup truck, without leaving deep ruts, to maximize the spring soil sampling window. Your soil sampling rig choices are usually walking the field with a hand soil probe or using an ATV/UTV.

Over the years, many creative clients have outfitted UTVs with hydraulic soil sampling equipment to collect 24-inch soil cores in the spring. This has allowed soil samplers to get into a field about one week before it could carry a pickup truck. It is a big deal if you can get soil test results back one week sooner in the spring!

It is fairly simple to rig a UTV with the receiver hitch-mounted hydraulic soil sampling system kit. All you need to build is a wooden box to hold the electric-hydraulic power unit and a large deep cell battery. The hydraulic cylinder is mounted on a channel iron, which simply attaches to the receiver hitch. A large deep cell battery has enough charge to complete a good day of soil sampling without a recharge. Just make sure you put the battery on the charger overnight.

Some clients have created hydraulic soil sampling systems that can be quickly added and removed from a pickup truck box or UTV. It is a quick and easy add-on for the couple weeks of spring soil sampling that you may do. If you want some simple designs for self-contained soil sampling systems that can be removed in 10 minutes or less, these are some examples to consider.

Once the soil sample is collected, the next step in successful spring soil testing is getting them analyzed ASAP. AGVISE Laboratories knows that every spring soil sample is a rush, and our normal turnaround time is next-day (24 hours after soil sample is received). If you need any soil sampling equipment or supplies, we have everything in stock to ensure you get spring soil testing completed on time. We know spring soil testing can be stressful, but we hope to make it easier with the right soil sampling equipment and the reliable soil testing services that AGVISE has provided since 1976.

Soil Testing and 4R Nutrient Stewardship

Each year, farmers aim to increase agricultural production and profitability while conserving our land resources for the next generation. These tandem goals drive sustainable soil fertility and crop nutrition decisions on cropland across the world.

In 2005, global fertilizer industry and environmental stakeholders began developing a standard theme to emphasize science-based stewardship in soil fertility and crop nutrition. The theme eventually became known as 4R Nutrient Stewardship, where each “R” referred to the “right” way to manage nutrients for crop production. The 4Rs are summarized as managing crop nutrition with the 1) Right Source, 2) Right Rate, 3) Right Time, and 4) Right Place.

To successfully implement 4R Nutrient Stewardship, you must start with a high-quality soil sample and an informative soil test. To begin, the fertilizer need and amount is determined through soil testing, which is based on regionally calibrated soil test levels for each crop. If you do not have a soil test, how do you know what the Right Rate is? Using crop removal rates or simply guessing without soil testing often leads to overapplication of fertilizer, cutting into profit.

A conventional whole-field composite soil sample (one soil sample per field) is certainly better than no soil sample. It gets you in the ballpark, but it does not detect variation in soil nutrient levels across the field. You might underapply fertilizer on high yielding parts and overapply fertilizer on low yielding parts. To get the Right Rate applied in the Right Place, precision soil sampling, either grid or zone, is the best way to determine the appropriate fertilizer rate and where to apply it in each field. Precision soil sampling is a proven tool to reduce over- and under-fertilization across fields, thus optimizing crop yield and profitability while reducing the potential risk of soil nutrient loss to the environment.

When you start soil sampling and making soil fertility plans for next year, keep 4R Nutrient Stewardship in mind. AGVISE Laboratories is a proud 4R Partner. To learn more about the 4Rs or become a 4R Partner, visit the 4R Nutrient Stewardship website.

Soil Testing Right Behind the Combine

This submission is courtesy of Dr. David Franzen, Extension Soil Specialist, North Dakota State University, Fargo, ND. It was originally published in the AGVISE Newsletter Fall 2019.

It is more the rule than the exception that soil sampling begins in mid-September, rather than starting immediately following small grain harvest. However, many producers miss an excellent window for soil testing by waiting too long. The reason for waiting is the hope that additional nitrogen will be made available through mineralization (i.e. decomposition of crop residue and organic matter). A review of research has shown that soil nitrate levels change very little, up or down, following small grain harvest.

Soil sampling right after harvest is recommended and has numerous advantages.

  1. Producers are more likely to use the actual soil test results for deciding fall nitrogen fertilizer rates if the soil test results are in their hands soon enough to consider before fall fieldwork begins.
  2. Soil sampling before to fall tillage provides more consistent 0-6 inch soil cores, which provides the best soil sample quality for phosphorus, potassium, zinc, organic matter, and other non-mobile soil nutrients.
  3. Soil sampling right after harvest guarantees that fields will be soil sampled on time and not missed due to weather problems that could happen later in the fall.

Field Variability Screaming in Your Ear? Precision Soil Sampling is the Answer

Your land is variable. Each fall, you watch the combine yield monitor go up and down across the field. You know where crop yield will be the best in wet years and dry years. So, why do you still use a whole-field composite soil test to manage fertilizer inputs and ignore the obvious field variability affecting crop yield potential?

Precision soil sampling, using grids or zones, divides whole fields into smaller units for soil sampling and creates more accurate and useful soil test information. It tells you exactly where you need to apply more or less fertilizer within each field, unlocking untapped crop yield potential and fertilizer input savings. Grid soil sampling, which is the most detailed approach, typically breaks a field into 2.5- to 5.0-acre grid cells. The more adaptable approach is zone soil sampling, which divides the field into productivity zones that can be managed to their needs. A well-designed zone should represent the smallest practical management unit that still accurately represents the area (e.g. 20-40 acres). Zones are commonly created using data layers such as crop yield, satellite imagery, soil survey, topography, salinity, drainage, or a combination of several data layers.

Precision soil test data can reveal previously unknown production problems, which were otherwise masked in a whole-field composite soil sample. For example, more zone soil sampling has uncovered more and more low soil pH zones (below pH 6) in the long-term no-till areas of central South Dakota, southwest North Dakota, and north-central Montana. Previously, the whole-field composite soil sample had blended the low and high soil pH zones together and everything looked okay. But now, the zone soil samples are revealing where low soil pH is causing serious crop yield loss and where soil pH can be corrected with lime to improve crop yield. This is a good example of precision soil sampling revealing a long-hidden problem and showing us how to fix it.

If you break a field into smaller and smaller units (i.e. more zones), you will learn more and more about field variability. To illustrate the concept, we pulled soil test data from 23,000 zone sampled fields in 2020 and calculated the average soil test range (difference) between the high and low zones within each field. The summarized data is presented in the table.

Average soil test range within a field (high zone – low zone)
Number of zones per field Nitrate-N

lb/acre, 0-24 inch

Olsen P

ppm

K

ppm

pH Soil organic matter

%

3 27 9 88 0.57 1.10
4 38 14 108 0.76 1.52
5 45 17 137 0.89 1.73
6 55 21 164 1.12 1.68
7 61 23 184 1.25 1.59
8 65 24 183 1.26 2.04

As the number of zones increases in a field, the range in soil test values (high zone – low zone) also increases and highlights the true variability across the field. The trend is clear not just for soil nutrients like nitrogen, phosphorus, and potassium, but also for soil properties like pH and organic matter. This tells us that one whole-field “average,” was missing the highs and lows that occur naturally in many fields.

Precision soil sampling is the first step in understanding what is really happening in your fields. You can gain a clearer picture of what plant nutrient deficiencies might be occurring and where you can improve crop yield potential. The next step is creating variable-rate prescriptions for seed, fertilizer, lime, and even herbicides (consider soil pH and organic matter). These tools can help you improve crop yield, optimize crop inputs, and increase profitability within each field on your farm.