Are Soybean Iron Deficiency Chlorosis (IDC) Ratings Getting Worse?

This article originally appeared in the AGVISE Laboratories Spring 2023 Newsletter

For the past three years, we have seen severe and widespread soybean iron deficiency chlorosis (IDC) symptoms across the region. In fact, some seasoned agronomists have commented that 2022 was the worst soybean IDC year that they had experienced in decades. Soybean IDC is a serious risk on soils with high calcium carbonate or salinity, which interfere with iron uptake and utilization in soybean. With all that we have learned about soybean IDC risk and management over the past 30 years, we have to ask, “What is going on? Why is soybean IDC continuing to get worse?”

The NDSU soybean IDC trial data suggests it might be the soybean varieties. Each year, seed companies submit soybean varieties to NDSU for independent evaluation of soybean IDC ratings (https://www.ag.ndsu.edu/varietytrials/). The NDSU trial sites impose high soybean IDC risk, where the best and worst soybean varieties are thoroughly tested alike for soybean IDC tolerance. In recent years, the problem is that the year-after-year average soybean IDC rating continues to get worse (see figure). In 2022, the average soybean variety scored 3.5 on the NDSU scale (1-good, 5-bad). Adverse soil and weather conditions may explain part of the worsening problem in the NDSU trials, but it is apparent that few soybean varieties can handle severe soybean IDC on their own. In defense of soybean breeders, there are a lot of different breeding objectives on their plates right now, including herbicide tolerance packages, disease and insect pests, and seed yield, of course!

This means we need to revisit and use all of our options in the soybean IDC toolbox. We have known about these effective management tools for over 20 years, and we are going to need to use all of them until soybean variety IDC tolerance can get to where we need it.

Steps to better soybean IDC management

  • Soil test each field, zone, or grid for carbonate and salinity to evaluate soybean IDC risk potential.
  • Plant soybean in fields with low soybean IDC risk. Choose a tolerant soybean variety, if you can. Some high IDC-risk fields may not be suitable for soybean.
  • Use a chelated iron fertilizer (high-quality EDDHA or HBED chelate) with seed at planting. Liquid and dry products are now available.
  • Plant soybean in wider rows. Soybean IDC tends to be less severe in wider rows.

Scouting Shorts: Soybean Iron Deficiency Chlorosis (IDC)

As soybean plants emerge and add trifoliate leaves, keep your eyes peeled for soybean iron deficiency chlorosis (IDC). Through the upper Midwest and into the Canadian Prairies, soils with high pH and calcium carbonate pose a special problem for soybean plants and iron uptake. If you encounter soybean IDC, you will start to notice soybean plants with distinct interveinal chlorosis (yellow leaf with green leaf veins) in the newest leaves. The unifoliate leaves typically remain green.

Look for characteristic symptoms of soybean IDC (above photo).

When to scout

Right now! Soybean IDC symptoms begin to appear as soybean plants enter the first- to third-trifoliate leaf stage. You will often see soybean IDC symptoms appear after a period of cool, wet weather.

Where to look

Soybean IDC symptoms are usually confined to soybean IDC hotspots with high carbonate and salinity. Soil pH is not a good indicator of soybean IDC risk because some high pH soils do not have high carbonate or salinity, which are the two principal risk factors. The soybean IDC hotspots often occur on landscape positions with moderate to poor drainage, but soybean IDC symptoms may appear across the entire field if high carbonate and salinity are present throughout the field. High residual soil nitrate-nitrogen can also make soybean IDC worse, so take an extra look at fields that were fallowed last year (e.g. Prevented Planting) and had higher soil nitrate-nitrogen than normal.

What soybean IDC can be confused with

Nitrogen deficiency: Pale green and yellowing is uniform across the entire leaf and veins (not interveinal like soybean IDC). Yellowing appears on older leaves. It is sometimes observed when poor inoculation or delayed nodulation occurs. Look at soybean roots for active nodules (bright pink-red center) or take plant and soil samples to confirm.

Potassium deficiency: Yellowing starts at the outer leaf margin, works its way inward with some brown mottling. Yellowing appears on older leaves during early growth stages and sometimes on upper leaves during pod fill. Take plant and soil samples to confirm.

Soybean cyst nematode (SCN): Aboveground symptoms are virtually invisible during the early growing season. Visual SCN symptoms only occasionally appear in late July or August, or if dry soil conditions occur. Look at soybean roots for small white-colored SCN cysts or take an SCN soil sample including infected root material to confirm.

More information on soybean IDC symptoms, causes, and management: https://www.agvise.com/soybean-iron-deficiency-chlorosis-symptoms-causes-and-management/

Fertilizing soybean

Soybean acres expanded greatly across the northern Great Plains and into Manitoba through the 1990s and 2000s. Today, soybean occupies a large portion of planted acres and makes a desirable rotation crop in canola, corn, and small grain production systems. As soybean has advanced northward and westward, soybean is often billed as a low maintenance crop, requiring no fertilizer or even seed inoculation. The fact is, if you expect soybean to be a low maintenance crop, you can expect low yield results. Achieving high soybean yields starts with a good, long-term soil fertility plan.

Nitrogen

Soybean yielding 40 bu/acre requires about 200 lb/acre nitrogen, but luckily you do not have to provide all the nitrogen! Soybean relies on nitrogen-fixing bacteria to meet its nitrogen requirements. Legumes, like soybean, form a symbiotic relationship with N-fixing bacteria, housed in root nodules, to provide sufficient nitrogen. Each legume species requires a unique N-fixing bacterium, thus an inoculant for lentil or pea does not work on soybean. Soybean seed must be inoculated with the N-fixing bacteria Bradyrhizobia japonicum. Ensure you have the proper soybean-specific seed inoculant. You can count the number of nodules on soybean roots and verify the presence of active N-fixing bacteria in the nodules with bright pink centers. These soybean plants have enough active N-fixing bacteria to meet soybean nitrogen requirements.

For new soybean growers, the N-fixing bacteria Bradyrhizobia japonicum is not naturally present in soil and seed inoculation is required. During the first few years of soybean establishment, supplemental nitrogen may be required to achieve good soybean yield while the N-fixing bacteria population builds. University of Minnesota researchers in the northern Red River Valley showed that soils with less than 75 lb/acre nitrate-N (0-24 inch) required 40-50 lb/acre additional preplant nitrogen. If successful inoculation and good nodule counts are observed in the first year, then no additional nitrogen should be required in subsequent years.

Plant soybean on soils with less than 100 lb/acre nitrate-N (0-24 inch), if possible. High residual soil nitrate may delay root nodulation with N-fixing bacteria and increase the severity of iron deficiency chlorosis (IDC). Because soybean can fix its own nitrogen, you may recoup better economic return on soils with high residual nitrate with crops that do not fix their own nitrogen like corn or wheat.

Phosphorus

Soybean does not respond to phosphorus as dramatically as grass crops like corn or wheat do. Nevertheless, medium to high soil test P are required to achieve good soybean yields. Soybean responds to broadcast P placement better than seed-placed or sideband P. In dryland regions where soybean is planted with air drills, seed-placed P or sideband P is often the only opportunity to apply phosphorus. You must pay special attention to seed-placed fertilizer safety with soybean. An air drill with narrow row spacing (6 inch) should not exceed 20 lb/acre P2O5 (40 lb/acre monoammonium phosphate, MAP, 11-52-0). Fertilizer rates exceeding the seed safety limit may delay seedling emergence and reduce plant population. For wider row spacings, no fertilizer should be placed with seed.

Potassium

Soybean removes far more potassium in harvested seed than canola or wheat. Soybean yielding 40 bu/acre removes about 60 lb/acre K2O, while wheat yielding 60 bu/acre removes only 20 lb/acre K2O. Pay close attention to potassium removal across the crop rotation. After soybean is added to the crop rotation, cumulative potassium removal greatly increases, and declining soil test K is observed over time.

Do not place potassium with soybean seed; delayed seedling emergence and reduced plant population can occur. Any potassium fertilizer should be broadcasted or banded away from seed.

Sulfur

Sulfur deficiency in soybean is uncommon, yet sometimes observed on coarse-textured soils with low organic matter (< 3.0%). Soybean response to sulfur is usually confined to certain zones within fields. With additional sulfur, soybean can produce more vegetative growth, but more vegetative growth may increase soybean disease severity, such as white mold. The residual sulfur remaining after sulfur-fertilized canola, corn, or small grain is often sufficient to meet soybean sulfur requirements.

Iron

Soybean is very susceptible to iron deficiency chlorosis (IDC). Soybean IDC is not caused by low soil iron but instead by soil conditions that decrease iron uptake by soybean roots. Soybean IDC risk and severity are primarily related to soil carbonate content (calcium carbonate equivalent, CCE) and worsened by salinity (electrical conductivity, EC).

Soybean IDC is common in the upper Midwest, northern Great Plains, and Canadian Prairies, where soils frequently have high carbonate and/or salinity. Within a field, IDC symptoms are usually confined to soybean IDC hotspots with high carbonate and salinity; however, symptoms may appear across a field if high carbonate and salinity are present throughout the field. Soybean IDC severity is made worse in cool, wet soils and soils with high residual nitrate. Soil pH is not a good indicator of soybean IDC risk because some high pH soils lack high carbonate and salinity, which are the two principal risk factors.

Guidelines for managing soybean IDC:

  1. Soil test each field, zone, or grid for soil carbonate and salinity. This may require soil sampling prior to soybean (possibly outside of your usual soil sampling rotation) or consulting previous soil sampling records.
  2. Plant soybean in fields with low carbonate and salinity (principal soybean IDC risk factors).
  3. Choose an IDC tolerant soybean variety on fields with moderate to high carbonate and salinity. This is your most practical option to reduce soybean IDC risk. Consult seed dealers, university soybean IDC ratings, and neighbor experiences when searching for IDC tolerant soybean varieties.
  4. Plant soybean in wider rows. Soybean IDC tends to be less severe in wide-row spacings (more plants per row, plants are closer together) than narrow-row spacings or solid-seeded spacings.
  5. Apply chelated iron fertilizer (e.g., high quality FeEDDHA) in-furrow at planting. In-furrow FeEDDHA application may not be enough to help an IDC susceptible variety in high IDC risk soils (see points #2 and #3).
  6. Avoid planting soybean on soils with very high IDC risk.

Zinc

Zinc deficiency in soybean is rare, even on soils with low soil test Zn. Soybean seed yield response to zinc is limited on soils with less than 0.5 ppm Zn. More zinc sensitive crops like corn, dry bean, flax, and potato will respond to zinc on soils with less than 1.0 ppm Zn. If zinc sensitive crops also exist in the crop rotation, you may apply zinc with broadcast phosphorus or potassium during the soybean year as another opportunity to build soil test Zn across the crop rotation.

Soybean Iron Deficiency Chlorosis: Symptoms, Causes, and Management

 

Figure 1. Soybean plants with iron deficiency chlorosis symptoms. Note the newest leaves are yellow with indistinct green veins.

If soybean turns yellow during an early growth stage, you may have a case of soybean iron deficiency chlorosis (IDC). The distinctive yellow symptoms of soybean IDC often appear as soybean enters the first- to third-trifoliate leaf stage. Soybean IDC is characterized by distinct interveinal chlorosis (yellow leaf with green leaf veins) in the newest leaves and may result in substantial yield loss (Figure 1). Soybean IDC is not caused by low soil iron but instead caused by soil conditions that decrease iron uptake by soybean roots.

Soybean IDC risk and severity are primarily related to soil carbonate content (calcium carbonate equivalent, CCE) and worsened by salinity (electrical conductivity, EC) (Table 1). Soybean IDC is common in soybean-growing regions of the upper Midwest, northern Great Plains, and Canadian Prairies, where soils frequently have high carbonate and/or salinity (Figure 2). Within a field, IDC symptoms are usually confined to soybean IDC hotspots with high carbonate and salinity; however, symptoms may appear across a field if high carbonate and salinity are present throughout the field. Soybean IDC severity is made worse in cool, wet soils and soils with high residual nitrate-nitrogen. Soil pH is not a good indicator of soybean IDC risk because some high pH soils lack high carbonate and salinity, which are the two principal risk factors.

Table 1. Soybean iron deficiency chlorosis risk (IDC) risk potential based on soil carbonate content and salinity.
Calcium carbonate equivalent (CCE)
Salinity (EC 1:1), dS/m less than 2.5% 2.6 – 5.0% greater than 5%
less than 0.25 low low moderate
0.26 – 0.50 low moderate high
0.51 – 1.00 moderate high very high
greater than 1.00 very high very high extreme

Figure 2. Soil samples with high risk of soybean iron deficiency chlorosis (IDC) in the northern Great Plains and upper Midwest.

Unlike a nitrogen or sulfur deficiency, soybean IDC is not correctable with an in-season fertilizer application. Foliar application of iron fertilizers, including FeEDDHA, may have short-term cosmetic effects, but foliar iron applications have not consistently increased soybean yield on IDC-affected plants. Chlorosis symptoms often alleviate naturally as environmental conditions improve (e.g. drier, warmer weather), but severe cases can persist and cause yield loss. North Dakota State University research has shown that IDC persisting into the fifth- and sixth-trifoliate leaf stage will significantly reduce soybean yield. For fields with historical soybean IDC problems, you should delineate soybean IDC hotspots for selective management using aerial or satellite imagery.

Guidelines for managing soybean IDC

  1. Soil test each field, zone, or grid for soil carbonate and salinity to evaluate soybean IDC risk potential (Table 1). This may require soil sampling prior to soybean (possibly outside of your usual soil sampling rotation) or consulting previous soil sampling records.
  2. Plant soybean in fields with low carbonate and salinity (principal soybean IDC risk factors).
  3. Choose an IDC tolerant soybean variety on fields with moderate to low carbonate and salinity.
  4. Plant soybean in wider rows. Soybean IDC tends to be less severe in wide-row spacings (plants are closer together) than narrow-row spacings or solid-seeded spacings.
  5. Apply chelated iron fertilizer (e.g., high quality FeEDDHA) in-furrow at planting. In-furrow FeEDDHA application may not be enough to help an IDC susceptible variety in high IDC risk soils (Figure 3).
  6. Avoid planting soybean on soils with very high IDC risk.

Figure 3. Soybean iron deficiency chlorosis (IDC) severity is reduced with iron fertilization. However, IDC-tolerant soybean varieties are more effective. Research from Dr. R. Jay Goos, NDSU, 2000.