Protecting Your Nitrogen Fertilizer Investment

Recent rain and snow have brought much-needed precipitation to the northern Great Plains and upper Midwest regions. Some degree of drought conditions stretch from Alberta to Iowa, and agronomists and farmers are wondering the best ways to protect spring-applied nitrogen as the planting season continues. How much nitrogen might I lose if I cannot incorporate it? Does vertical tillage incorporate fertilizer enough? We have compiled some resources to help answer those questions.

There are three ways to lose fertilizer nitrogen: ammonia volatilization, denitrification, and nitrate leaching. In excessively wet soils, denitrification and nitrate leaching are a concern. However, for spring-applied nitrogen, ammonia volatilization is the main concern with dry soil conditions and unpredictable precipitation forecasts.

When you apply ammoniacal fertilizers (e.g. anhydrous ammonia, urea, UAN, ammonium sulfate) to the soil surface without sufficient incorporation, some amount of free ammonia (NH3) can escape to the atmosphere. Sufficient incorporation with tillage or precipitation is needed to safely protect that nitrogen investment below the soil surface. With dry soil conditions, this is important to remember because we must balance the need to protect nitrogen fertilizer while conserving soil water for seed germination and emergence.

Ammonia volatilization risk depends on soil and environmental factors (Table 1) and the nitrogen fertilizer source (Table 2). Typically, we are most concerned about ammonia volatilization for surface-applied urea or UAN. It is not easy to estimate how much nitrogen might be lost, and sometimes the losses can be substantial. Although you cannot change the soil type or weather forecast, you do have control over the nitrogen source and application method (Table 2) to protect your nitrogen investment.

Practices to reduce ammonia volatilization, in order of most effective: 

  • Apply urea in subsurface bands at least 3 inches below the soil surface. A shallow urea band (1 or 2 inches) acts like a slow-release anhydrous ammonia band, and nobody should ever apply anhydrous ammonia that shallow.
  • If nitrogen will be broadcast with incorporation, make sure the fertilizer is sufficiently incorporated at least 2 inches below the soil surface to ensure good soil coverage. A chisel plow or field cultivator is usually needed. The popularity of high-speed disks (vertical tillage) has led some people to think that it counts as a meaningful incorporation event. In reality, it just moves soil and crop residue around on the soil surface without really incorporating any fertilizer. Take a look after you run across the field and you will see white urea granules everywhere. There are soil-applied herbicide incorporation videos from the 1970s that show what a thorough incorporation job really requires.
  • If nitrogen will be broadcast without incorporation, try to time the fertilizer application right before rain (at least 0.3 inch of precipitation). Soils with good crop residue cover (no-till) may require more rain to sufficiently move urea or UAN into the soil surface.
  • If no rain is forecasted in the near future, consider applying a urease inhibitor on urea or UAN to provide temporary protection until rain arrives. The university research-proven urease inhibitor is NBPT, available in products like Agrotain (Koch) and its generic cousins. For generic products, make sure the active ingredient rate is 1.3 to 1.8 lb NBPT per ton of urea to ensure effective NBPT activity and protection. NBPT begins to breakdown after 7 to 14 days. In addition, it is important to remember that nitrification inhibitors like nitrapyrin and DCD do not protect against ammonia volatilization.

These practices should also be considered if you will be applying in-season nitrogen to corn or wheat later in the summer. it is always best to apply nitrogen below the soil surface, such as injected anhydrous ammonia or coulter-injected UAN, to protect nitrogen fertilizer. For surface-applied urea or UAN, you will want to time the fertilizer application just before a rainfall or consider NBPT to extend the rainfall window.

Helpful resources: 

Nitrogen extenders and additives for field crops (NDSU)

How long can NBPT-treated urea remain on the soil surface without loss? (NDSU)

Should you add inhibitors to your sidedress nitrogen application? (Univ. Minnesota)

Split the risk with in-season nitrogen (AGVISE Laboratories)

Phosphorus and the 4Rs: The progress we have made

The year 2019 marked the 350th anniversary of discovering phosphorus, an element required for all life on Earth and an essential plant nutrient in crop production. Over the years, we have fallen in and out of love with phosphorus as a necessary crop input and an unwanted water pollutant. Through improved knowledge and technologies, we have made great progress in phosphorus management in crop production. Let’s take a look at our accomplishments!

Right Rate

Phosphorus fertilizer need and amount is determined through soil testing, based on regionally calibrated soil test levels for each crop. Soils with low soil test phosphorus require more fertilizer to optimize crop production, whereas soils with excess soil test phosphorus may only require a starter rate. Across the upper Midwest and northern Great Plains, soil testing shows that our crops generally need MORE phosphorus to optimize crop yield (Figure 1), particularly as crop yield and crop phosphorus removal in grain has increased. Since plant-available phosphorus varies across any field, precision soil sampling (grid or zone) allows us to vary fertilizer rates to better meet crop phosphorus requirements in different parts of the field.

For phosphorus and the 4Rs article

Figure 1. Soil samples with soil test phosphorus below 15 ppm critical level (Olsen P) across the upper Midwest and northern Great Plains in 2019.

Right Source

Nearly all phosphorus fertilizer materials sold in the upper Midwest and northern Great Plains are some ammoniated phosphate source, which has better plant availability in calcareous soils. Monoammonium phosphate (MAP, 11-52-0) is the most common dry source and convenient as a broadcast or seed-placed fertilizer. Some new phosphate products also include sulfur and micronutrients in the fertilizer granule, helping improve nutrient distribution and handling. The most common fluid source is ammonium polyphosphate (APP, 10-34-0), which usually contains about 75% polyphosphate and 25% orthophosphate that is available for immediate plant uptake. Liquid polyphosphate has the impressive ability to carry 2% zinc in solution, whereas pure orthophosphate can only carry 0.05% zinc. Such fertilizer product synergies help optimize phosphorus and micronutrient use efficiency.

Right Time

Soils of the northern Great Plains are often cold in spring, and early season plant phosphorus uptake can be limited to new seedlings and their small root systems. We apply phosphorus before or at planting to ensure adequate plant-available phosphorus to young plants and foster strong plant development. In-season phosphorus is rarely effective as a preventive or corrective strategy.

Right Place

Proper phosphorus placement depends on your system and goals. Broadcasting phosphorus fertilizer followed by incorporation allows quick application and uniform distribution of high phosphorus rates. This strategy works well if you are building soil test phosphorus in conventional till systems. In no-till systems, broadcast phosphorus without incorporation is not ideal because soluble phosphorus left on the surface can move with runoff to water bodies.

In no-till systems, subsurface banded phosphorus is more popular because phosphorus is placed below the soil surface, thus less vulnerable to runoff losses. In general, banded phosphorus is more efficient than broadcast phosphorus. In the concentrated fertilizer band, less soil reacts with the fertilizer granules, thus reducing phosphorus fixation, allowing improved plant phosphorus uptake. Some planting equipment configurations have the ability to place fertilizer near or with seed, which further optimizes fertilizer placement and timing for young plants.

For more information on 4R phosphorus management, please read this excellent open-access review article: Grant, C.A., and D.N. Flaten. 2019. J. Environ. Qual. 48(5):1356–1369.

Caution: Ammonium Sulfate with Seed

Seed-placed fertilizer is a common practice to increase seedling vigor and optimize fertilizer placement and crop response. This is a popular strategy to apply phosphorus for canola, corn, and wheat. However, the seed-placed fertilizer rate cannot exceed seed safety limits, otherwise seedling germination and plant population may be reduced. Sulfur is very important in canola growth and development, so farmers often try placing ammonium sulfate (AMS) with canola seed as well! This can create big problems.

A team of agronomists and soil scientists at the University of Manitoba conducted greenhouse and field studies, examining the effect of seed-placed ammonium sulfate on canola plant population and seed yield. The plant population loss was much greater on soils with pH > 7.5 (Figure 1). The high pH soils contained calcium carbonate (CaCO3), which reacts with ammonium sulfate to create calcium sulfate (gypsum) and ammonium carbonate. The higher reaction pH of ammonium carbonate produces free ammonia (NH3). Free ammonia (NH3) in soil is toxic to living organisms and kills germinating seeds. Acute ammonia toxicity is a major concern with fertilizer materials that liberate free ammonia (NH3) in soil, such as anhydrous ammonia (82-0-0) or urea (46-0-0), ultimately reducing plant population if you are not careful with fertilizer rate and placement.

For Caution: Ammonium Sulfate with Seed post

Figure 1. Ammonium sulfate (AMS, 21-0-0-24S) included with seed-placed monoammonium phosphate (MAP, 10-52-0) reduced canola plant population. Soil carbonate content is 21% CCE and 0.5% CCE in knoll soil and hollow soil, respectively. Brandon, Manitoba.

Across the landscape, soil pH and carbonate content will vary. The well-drained lower landscape positions (swales, hollows) often have acidic to neutral pH and little carbonate. The upper landscape positions (knobs, knolls), suffering decades of soil erosion, often have high pH and ample carbonate (Figure 1). The risk of plant population loss is greater on eroded knobs where adding ammonium sulfate can create ammonia toxicity concern.

Considerable yield loss will occur if canola plant population is less than 70 plants per square meter. Even with low fertilizer rates, the interaction of seed-placed ammonium sulfate and phosphorus can greatly reduce canola plant population. In Manitoba, 25% plant population loss was observed with only 8 lb/acre S and 18 lb/acre P2O5 (Figure 2).For Caution: Ammonium Sulfate with Seed article

Figure 2. Ammonium sulfate (AMS, 21-0-0-24S) included with seed-placed monoammonium phosphate (MAP, 10-52-0) reduced canola plant population. Carman, Manitoba, 2011.

Sulfur is vital for successful canola production, but it must be applied safely. There are new air drill configurations with innovative seed and fertilizer placement options. Seed safety is paramount with seed-placed fertilizer. Ammonium sulfate should be broadcasted or banded away from seed (mid-row). Keeping ammonium sulfate away from seed will also allow you to maximize seed-placed phosphorus rates and efficiency without jeopardizing seed safety.

Placing ammonium sulfate with seed should be an emergency option only. Canola plant population loss should be expected, even at low ammonium sulfate rates, on soils with pH greater than 7.5 and calcium carbonate.