Phosphorus and the 4Rs: The progress we have made

The year 2019 marked the 350th anniversary of discovering phosphorus, an element required for all life on Earth and an essential plant nutrient in crop production. Over the years, we have fallen in and out of love with phosphorus as a necessary crop input and an unwanted water pollutant. Through improved knowledge and technologies, we have made great progress in phosphorus management in crop production. Let’s take a look at our accomplishments!

Right Rate

Phosphorus fertilizer need and amount is determined through soil testing, based on regionally calibrated soil test levels for each crop. Soils with low soil test phosphorus require more fertilizer to optimize crop production, whereas soils with excess soil test phosphorus may only require a starter rate. Across the upper Midwest and northern Great Plains, soil testing shows that our crops generally need MORE phosphorus to optimize crop yield (Figure 1), particularly as crop yield and crop phosphorus removal in grain has increased. Since plant-available phosphorus varies across any field, precision soil sampling (grid or zone) allows us to vary fertilizer rates to better meet crop phosphorus requirements in different parts of the field.

For phosphorus and the 4Rs article

Figure 1. Soil samples with soil test phosphorus below 15 ppm critical level (Olsen P) across the upper Midwest and northern Great Plains in 2019.

Right Source

Nearly all phosphorus fertilizer materials sold in the upper Midwest and northern Great Plains are some ammoniated phosphate source, which has better plant availability in calcareous soils. Monoammonium phosphate (MAP, 11-52-0) is the most common dry source and convenient as a broadcast or seed-placed fertilizer. Some new phosphate products also include sulfur and micronutrients in the fertilizer granule, helping improve nutrient distribution and handling. The most common fluid source is ammonium polyphosphate (APP, 10-34-0), which usually contains about 75% polyphosphate and 25% orthophosphate that is available for immediate plant uptake. Liquid polyphosphate has the impressive ability to carry 2% zinc in solution, whereas pure orthophosphate can only carry 0.05% zinc. Such fertilizer product synergies help optimize phosphorus and micronutrient use efficiency.

Right Time

Soils of the northern Great Plains are often cold in spring, and early season plant phosphorus uptake can be limited to new seedlings and their small root systems. We apply phosphorus before or at planting to ensure adequate plant-available phosphorus to young plants and foster strong plant development. In-season phosphorus is rarely effective as a preventive or corrective strategy.

Right Place

Proper phosphorus placement depends on your system and goals. Broadcasting phosphorus fertilizer followed by incorporation allows quick application and uniform distribution of high phosphorus rates. This strategy works well if you are building soil test phosphorus in conventional till systems. In no-till systems, broadcast phosphorus without incorporation is not ideal because soluble phosphorus left on the surface can move with runoff to water bodies.

In no-till systems, subsurface banded phosphorus is more popular because phosphorus is placed below the soil surface, thus less vulnerable to runoff losses. In general, banded phosphorus is more efficient than broadcast phosphorus. In the concentrated fertilizer band, less soil reacts with the fertilizer granules, thus reducing phosphorus fixation, allowing improved plant phosphorus uptake. Some planting equipment configurations have the ability to place fertilizer near or with seed, which further optimizes fertilizer placement and timing for young plants.

For more information on 4R phosphorus management, please read this excellent open-access review article: Grant, C.A., and D.N. Flaten. 2019. J. Environ. Qual. 48(5):1356–1369.

Caution: Ammonium Sulfate with Seed

Seed-placed fertilizer is a common practice to increase seedling vigor and optimize fertilizer placement and crop response. This is a popular strategy to apply phosphorus for canola, corn, and wheat. However, the seed-placed fertilizer rate cannot exceed seed safety limits, otherwise seedling germination and plant population may be reduced. Sulfur is very important in canola growth and development, so farmers often try placing ammonium sulfate (AMS) with canola seed as well! This can create big problems.

A team of agronomists and soil scientists at the University of Manitoba conducted greenhouse and field studies, examining the effect of seed-placed ammonium sulfate on canola plant population and seed yield. The plant population loss was much greater on soils with pH > 7.5 (Figure 1). The high pH soils contained calcium carbonate (CaCO3), which reacts with ammonium sulfate to create calcium sulfate (gypsum) and ammonium carbonate. The higher reaction pH of ammonium carbonate produces free ammonia (NH3). Free ammonia (NH3) in soil is toxic to living organisms and kills germinating seeds. Acute ammonia toxicity is a major concern with fertilizer materials that liberate free ammonia (NH3) in soil, such as anhydrous ammonia (82-0-0) or urea (46-0-0), ultimately reducing plant population if you are not careful with fertilizer rate and placement.

For Caution: Ammonium Sulfate with Seed post

Figure 1. Ammonium sulfate (AMS, 21-0-0-24S) included with seed-placed monoammonium phosphate (MAP, 10-52-0) reduced canola plant population. Soil carbonate content is 21% CCE and 0.5% CCE in knoll soil and hollow soil, respectively. Brandon, Manitoba.

Across the landscape, soil pH and carbonate content will vary. The well-drained lower landscape positions (swales, hollows) often have acidic to neutral pH and little carbonate. The upper landscape positions (knobs, knolls), suffering decades of soil erosion, often have high pH and ample carbonate (Figure 1). The risk of plant population loss is greater on eroded knobs where adding ammonium sulfate can create ammonia toxicity concern.

Considerable yield loss will occur if canola plant population is less than 70 plants per square meter. Even with low fertilizer rates, the interaction of seed-placed ammonium sulfate and phosphorus can greatly reduce canola plant population. In Manitoba, 25% plant population loss was observed with only 8 lb/acre S and 18 lb/acre P2O5 (Figure 2).For Caution: Ammonium Sulfate with Seed article

Figure 2. Ammonium sulfate (AMS, 21-0-0-24S) included with seed-placed monoammonium phosphate (MAP, 10-52-0) reduced canola plant population. Carman, Manitoba, 2011.

Sulfur is vital for successful canola production, but it must be applied safely. There are new air drill configurations with innovative seed and fertilizer placement options. Seed safety is paramount with seed-placed fertilizer. Ammonium sulfate should be broadcasted or banded away from seed (mid-row). Keeping ammonium sulfate away from seed will also allow you to maximize seed-placed phosphorus rates and efficiency without jeopardizing seed safety.

Placing ammonium sulfate with seed should be an emergency option only. Canola plant population loss should be expected, even at low ammonium sulfate rates, on soils with pH greater than 7.5 and calcium carbonate.

Fallow Syndrome: Preventing Phosphorus Problems

Some crops that do not support mycorrhizal fungi (left to right: sugar beet, canola, radish).

Producers in the northern Great Plains and upper Midwest need to consider the risk of fallow syndrome in their crop nutrition plans. You are probably asking, what is “fallow syndrome” and why should I care? After all, summer fallow is not that common anymore! But the greater number of Prevented Planting acres in 2019 and 2020 meant that we have had many unintended fallow fields, making fallow syndrome a serious and widespread concern for the next year.

Fallow syndrome is an induced phosphorus deficiency caused by a lack of mycorrhizal fungi in soil. Some plant species, like corn and wheat, rely heavily on mycorrhizae to colonize the plant root system and help acquire important nutrients like phosphorus and zinc. If soil is lacking sufficient mycorrhizae to colonize plant roots, a case of fallow syndrome will increase phosphorus fertilizer needs and even cost crop yield potential.

Understanding mycorrhizae

Mycorrhizae fungi occur naturally in soils and readily colonize plant roots. Upon root colonization, mycorrhizae fungal filaments act as extensions of the root system and increase the soil volume available for plant water and nutrient uptake. The combined root-mycorrhizae surface area can be up to 10-fold greater than roots without mycorrhizae. Mycorrhizae depend on living plant roots to support stable mycorrhizae populations. However, not all plant species host and support mycorrhizae growth. Some common field crops are non-host species and their planting results in rapid drops in mycorrhizae populations.

Summer fallow or unplanted cropland, such as Prevented Planting in 2020, is a classic example of providing no or few living plant roots in soil to maintain mycorrhizae populations. In addition, some crop species do not support mycorrhizae, such as those in the goosefoot family (sugar beet) and mustard family (canola, radish, turnip). Following a classic case of summer fallow or a non-mycorrhizae supporting crop, the mycorrhizae population in soil will quickly drop. A cover crop mix that included a grass species (e.g. barley, rye) should still support mycorrhizae and prevent fallow syndrome concerns.

Preventing fallow syndrome

The easiest prevention strategy after fallow is planting a crop species without fallow syndrome risk like soybean, canola, or sugar beet. Avoid planting susceptible crops like corn and wheat. These crops are highly dependent on mycorrhizae to acquire phosphorus, and extra starter phosphorus will be required if fallow syndrome risk is present.

To reduce fallow syndrome risk in corn or wheat, extra phosphorus fertilizer must be placed with or near the seed. Applying more broadcast phosphorus or relying on high soil test P will not prevent fallow syndrome. The starter phosphorus rate should be 20 to 40 lb/acre P2O5. In some university research trials, up to 60 lb/acre P2O5 with 2×2-band placement near the seed was needed to prevent corn yield loss to fallow syndrome.

For wheat, these phosphorus rates are typically seed safe with monoammonium phosphate (MAP, 11-52-0). Most corn planters can safely apply 20 lb/acre P2O5 (5 gal/acre ammonium polyphosphate, APP, 10-34-0) in the furrow. For medium/fine-textured soils with good soil moisture at planting, you can generally apply up to 10 gal/acre 10-34-0 (40 lb/acre P2O5) safely in the furrow at 30-inch row spacing. Higher 10-34-0 rates may exceed seed safety limits on dry soils or coarse-textured soils and require 2×2-band placement to maintain seed safety.

Complete liquid fertilizers, such as 6-24-6 or 9-18-9, are not suggested for preventing fallow syndrome. Compared to 10-34-0, the products have lower P concentration that result in less applied phosphorus, even if used at maximum seed safe rates. The extra N + K2O in “complete” liquid fertilizers increases the salt index and lowers the seed safe rate.