Fall-applied Nitrogen Fertilizer: A Couple Simple Rules

The beginning to mid-October is when soil temperatures across the northern Great Plains and Canadian Prairies typically drop below 50 °F (10 °C). This is the soil temperature threshold that we wait to reach before applying fall-applied nitrogen fertilizer. It is important to wait until soil temperatures are cold enough (<50 °F) to help reduce the risk of soil nitrogen loss. Once nitrogen fertilizer is applied, soil microbes begin converting ammonium-nitrogen (NH4+) to nitrate-nitrogen (NO3), a process called nitrification. In the nitrate form, nitrogen is vulnerable to loss through nitrate leaching or denitrification. The colder soil temperatures slow microbial activity, thus keeping more nitrogen in the safer ammonium-nitrogen form. This applies to any ammoniacal nitrogen fertilizer source, which includes anhydrous ammonia, urea, and ammonium sulfate.

Map courtesy of the North Dakota Agricultural Weather Network (NDAWN).
You can find an updated average bare soil temperature map here

The 50 °F soil temperature rule of thumb is particularly important for soils prone to nitrogen loss: well-drained, coarse-textured soils are prone to nitrate leaching and poorly-drained, fine-textured soils are prone to denitrification. If such soils receive excess precipitation or become saturated (waterlogged) through fall or spring, soil nitrate can be lost through leaching or denitrification. In general, it might be better to apply nitrogen fertilizer on such soils in spring. But, if you must apply nitrogen fertilizer in the fall, make sure you wait until soil temperatures are cold enough to keep it in the ammonium-nitrogen form for a longer period of time to reduce potential soil nitrogen losses.

For fall-applied nitrogen, subsurface banding or incorporation is also important to prevent ammonia volatilization, another potential nitrogen loss mechanism. Fall precipitation (rain or snow) is too sporadic and unreliable to be considered an effective incorporation “strategy” for fall-applied nitrogen. Fall-applied urea should be banded below the soil surface (3 inches or deeper) or incorporated with tillage (at least 3-4 inches) to ensure complete coverage. Shallow fertilizer bands or shallow incorporation with vertical tillage does not provide enough soil coverage to prevent ammonia volatilization.

Fall-applied anhydrous ammonia should be banded 5 to 6 inches deep. Ensure that anhydrous ammonia trenches are sealing properly to prevent gaseous ammonia losses from the trench. In addition, the nitrification inhibitor nitrapyrin (brand name N-Serve) can be added to anhydrous ammonia to delay nitrification, offering additional insurance to keep nitrogen in the safer ammonium-nitrogen form for longer. However, please note that its efficacy decreases with warmer soil temperatures, so it is no replacement for cool soil temperatures (<50 °F).

In conclusion, fall-applied nitrogen is a great way to allocate time and labor resources, leaving one less thing to do in the spring. But, you must be smart and consider fertilizer source, timing, and placement options to make sure that the nitrogen applied in fall will still be there next spring.

How much residual soil nitrate is left after the 2021 corn crop?

It’s probably more than you think.

So far, the residual soil nitrate-nitrogen trend following corn is much higher than average across the upper Midwest and northern Great Plains. This follows the same trend set by the 2021 wheat crop. For many growers in the region, the hot and dry growing season has resulted in high residual soil nitrate-N carryover where corn yield was lower than average. An update on average residual soil nitrate-N after grain and silage corn, broken into zip code areas, can be found below (Table 1). This data highlights the importance of soil sampling for nitrate-N, even after high N-requirement crops you may not think of leaving much residual soil nitrate-N behind.

Bar graph showing median residual nitrate-N in lb/acre for fields sampled after grain corn as of Oct. 11, 2021. Results include fields tested in MN, ND, SD, and MB. Fields tested thus far are on pace to set a record for amount of nitrate-N left after corn.

The early soil nitrate-N trend data gives us a snapshot of the soil samples that AGVISE has analyzed so far. The average soil test data is not a replacement for actual soil test results on your fields or your clients’ fields. There is considerable variability within a single zip code area, with some corn fields having less than 20 lb/acre nitrate-N and many other fields that are much higher. Take a look at eastern South Dakota, the Sioux Falls and Watertown areas have over 49% of soil samples with more than 100 lb/acre nitrate-N (0-24 inch soil depth). Considering sky-high nitrogen fertilizer prices (and still rising), it makes sense to soil test for nitrate-N and credit it toward next year’s crop nitrogen budget.

Agronomic considerations for soybean in 2022

One crop that will not benefit from extra residual soil nitrate-N after corn is soybean. Soybean can create its own nitrogen thanks to a symbiotic relationship with nitrogen-fixing bacteria. The nitrogen fixation process takes energy, however, and if there is already ample plant-available nitrate in the soil, soybean will delay nodulation and take advantage of the free nitrate. Delayed nodulation may ultimately lead to soybean yield loss.

High residual soil nitrate-N can also increase soybean iron deficiency chlorosis (IDC) severity.  Soybean IDC is a challenge for growers in the upper Midwest, northern Great Plains, and Canadian Prairies, especially on soils with high carbonate and salinity. If soil nitrate-N is also high, research has shown it can make soybean IDC even worse and result in lower soybean yield. If you plan to grow soybean on fields with high residual soil nitrate-N, seriously consider IDC-tolerant soybean varieties or consider planting them on fields with lower residual soil nitrate-N.

Should a corn-corn rotation be considered after a drought year and high soil nitrate?

Planting a second corn crop would allow a producer to capture this “free” nitrate-N in the soil profile. However, planting corn on corn has many challenges from soil moisture to insect pressures (e.g. corn rootworm). The 2021 corn crop started the growing season with a full profile of water (due to excessive moisture in 2019 and adequate moisture in 2020) and ended with enough to push the corn crop through harvest. Going into the 2022 growing season, plant available water will be considerably less than the beginning of 2021. If the drought continues into 2022, remember that corn requires more moisture than soybean, so planting corn on corn means putting a higher water-requiring crop on ground that had less water to start with (versus corn following soybeans). Less available moisture, combined with other agronomic pressures, may mean less than expected yield for a corn-on-corn rotation.

Table 1. Residual nitrate trends as of Oct. 11, 2021 from more than 2,500 soil samples taken after corn. Regions with less than 60 soil samples are not included in the table.

Soil Sample Before Tillage: Consistent sample depth matters!

The fall harvest season is a busy time of year. Farmers need to finish harvest, apply fertilizer, and complete any tillage operations before the long winter sets in. Another field operation that needs to be completed within this flurry of activity is soil sampling, and sampling timing is crucial to getting quality and consistent soil cores.

Do your best to soil sample fields before any tillage pass. Tillage makes collecting soil cores with consistent depths very difficult, which can affect test results. Soil test results are only as reliable as the soil samples that were collected from the field. If a sample is submitted as a 0 to 6-inch sample and is only really the top 0 to 4-inch of the soil, soil test values are inflated compared to actual 0 to 6-inch results. The opposite happens if a core is actually deeper than the 0 to 6-inch depth: soil test values are diluted if the sample that was submitted is deeper. The table below shows an example of how test levels of non-mobile nutrients like P, K, and Zn decrease as soil core length increases.

Why tillage affects sampling depth consistency and core quality

Tillage breaks apart soil and introduces air, essentially “fluffing” the soil. Sampling after the soil has been “fluffed” means the sampler has to guess what actually represents a 6-inch soil depth for that field. What was a 0 to 6-inch core in the soil probe before tillage might actually take up 8 inches in the soil probe now, given the soil profile is now “fluffy” after tillage. Over time the soil will settle, but when does that happen? How fast does that happen? When will 0 to 6 inches of tilled soil in the soil probe actually represent a 0 to 6-inch depth again? No one can accurately answer these questions.

Beyond the soil being “fluffy” after tillage, tillage loosens soil aggregates, makes clods, and generally dries the soil. This means loose soil may fall out of the probe or the probe pushes around the clods at the surface and does not get a true 0 to 6-inch sample. This might mean a core that’s collected and sent to the laboratory might actually be a 2 to 8-inch depth core, or a 2 to 6-inch depth core.

A tip for sampling after tillage

If you have to sample after tillage, sample in the wheel track. The tire compresses the soil and allows you to get a better opportunity at a true 0 to 6-soil core depth.

Getting consistent soil core depths is crucial. Sampling before tillage is the best thing you can do to ensure quality cores with consistent depths. Sampling after tillage can result in lower test levels for non-mobile nutrients like P, K, and Zn. Please call either AGVISE laboratory and ask for one of our technical support staff if you have any questions about sampling after a field has been tilled.