Protect Nitrogen Fertilizer from Ammonia Volatilization

Recent rain and snow have brought much-needed precipitation to the northern Great Plains and upper Midwest regions. Some degree of drought conditions stretch from Alberta to Iowa, and agronomists and farmers are wondering the best ways to protect spring-applied nitrogen as the planting season continues. How much nitrogen might I lose if I cannot incorporate it? Does vertical tillage incorporate fertilizer enough? We have compiled some resources to help answer those questions.

There are three ways to lose fertilizer nitrogen: ammonia volatilization, denitrification, and nitrate leaching. In excessively wet soils, denitrification and nitrate leaching are a concern. However, for spring-applied nitrogen, ammonia volatilization is the main concern with dry soil conditions and unpredictable rainfall forecasts.

When you apply ammoniacal fertilizers (e.g. anhydrous ammonia, urea, UAN, ammonium sulfate) to the soil surface without sufficient incorporation, some amount of free ammonia (NH3) can escape to the atmosphere. Sufficient incorporation with tillage or precipitation is needed to safely protect that nitrogen investment below the soil surface. With dry soil conditions, this is important to remember because we must balance the need to protect nitrogen fertilizer while conserving soil water for seed germination and emergence.

Ammonia volatilization risk depends on soil and environmental factors (Table 1) and the nitrogen fertilizer source (Table 2). Typically, we are most concerned about ammonia volatilization for surface-applied urea or UAN. It is not easy to estimate how much nitrogen might be lost, and sometimes the losses can be substantial. Although you cannot change the soil type or weather forecast, you do have control over the nitrogen source and application method (Table 2) to protect your nitrogen investment.

Practices to reduce ammonia volatilization, in order of most effective: 

  • Apply urea in subsurface bands at least 3 inches below the soil surface. A shallow urea band (1 or 2 inches) acts like a slow-release anhydrous ammonia band, and nobody should ever apply anhydrous ammonia that shallow.
  • If nitrogen will be broadcast with incorporation, make sure the fertilizer is sufficiently incorporated at least 2 inches below the soil surface to ensure good soil coverage. A chisel plow or field cultivator is usually needed. The popularity of high-speed disks (vertical tillage) has led some people to think that it counts as a meaningful incorporation event. In reality, it just moves soil and crop residue around on the soil surface without really incorporating any fertilizer. Take a look after you run across the field and you will see white urea granules everywhere. There are soil-applied herbicide incorporation videos from the 1970s that show what a thorough incorporation job really requires.
  • If nitrogen will be broadcast without incorporation, try to time the fertilizer application right before rain (at least 0.3 inch of precipitation). Soils with good crop residue cover (no-till) may require more rain to sufficiently move urea or UAN into the soil surface.
  • If no rain is forecasted in the near future, consider applying a urease inhibitor on urea or UAN to provide temporary protection until rain arrives. The university research-proven urease inhibitor is NBPT, available in products like Agrotain (Koch) and its generic cousins. For generic products, make sure the active ingredient rate is 1.3 to 1.8 lb NBPT per ton of urea to ensure effective NBPT activity and protection. NBPT begins to breakdown after 7 to 14 days. In addition, it is important to remember that nitrification inhibitors like nitrapyrin and DCD do not protect against ammonia volatilization.

These practices should also be considered if you will be applying in-season nitrogen to corn or wheat later in the summer. it is always best to apply nitrogen below the soil surface, such as injected anhydrous ammonia or coulter-injected UAN, to protect nitrogen fertilizer. For surface-applied urea or UAN, you will want to time the fertilizer application just before a rainfall or consider NBPT to extend the rainfall window.

Resources on ammonia volatilization and urease inhibitors

Nitrogen extenders and additives for field crops, NDSU

How long can NBPT-treated urea remain on the soil surface without loss?, NDSU

Should you add inhibitors to your sidedress nitrogen application?, University of Minnesota

Split the risk with in-season nitrogen, AGVISE

High Soil Nitrogen following Drought: How to manage next year

From time to time, moderate to severe droughts hit the Great Plains. Such is life in semi-arid climates. When a drought occurs, it is normal to find higher residual soil nitrate-nitrogen after harvest. Since the widespread adoption of soil testing in the 1970s, we have seen this phenomenon in all major drought years: 1988, 2002, 2006, 2012, 2017 (Figure 1). The lack of precipitation and exhausted stored soil water reduces crop growth and yield, meaning much of the applied nitrogen fertilizer remains unused, showing up in the residual soil nitrate-nitrogen test. In 2017, very high residual soil nitrate-nitrogen was observed across wide geographies of western North Dakota and South Dakota (Figure 2).

Figure 1. Residual soil nitrate-nitrogen following wheat on the northern Great Plains.

 

 

Figure 2. Residual soil nitrate-nitrogen following wheat on the northern Great Plains in 2017.

 

Following a drought, we often get the question, “Can I count on all the soil nitrate in my soil test for next year’s crop?” The simple answer is yes; you can count on the amount of soil nitrate-nitrogen in the soil test, but you must consider additional factors. Even in drought, some parts of each field will produce higher crop yield than other parts because the better soils have higher water holding capacity (e.g. higher clay content, higher organic matter). In the high yielding zones, there is less residual soil nitrate remaining in the soil profile. Drought will create more variability in crop yield and residual soil nitrate, mostly driven by topography and soil texture.

Let’s imagine you had a wheat crop severely affected by drought, but some parts of the field still had 50% normal yield (maybe lower landscape positions, greater water holding capacity). Following harvest, the whole-field composite soil test showed 140 lb/acre nitrate-N (0-24 inch). You were skeptical about that very high residual soil nitrate level, so the crop consultant resampled the parts with better crop yield, which then had 80 lb/acre nitrate-N (0-24 inch). Using the whole-field composite soil test result of 140 lb/acre nitrate-N (0-24 inch), you would only need to apply some starter nitrogen fertilizer for next year’s crop. However, if you only applied starter nitrogen, the high yielding parts of the field with only 80 lb/acre nitrate-N (0-24 inch) would be under-fertilized, costing crop yield and profit next year, on the best soils in the field.

If you only have a whole-field composite soil test result, you must consider spatial variability in residual soil nitrate across the field. You will want to apply a base nitrogen fertilizer rate to cover the parts with lower residual soil nitrate than the field average. The base nitrogen fertilizer rate may range between 30 to 60 lb/acre N, depending on spatial variability and risk tolerance. If you do zone soil sampling, you have a much better idea of spatial variability and nitrogen fertilizer needs in all parts of your fields. Through productivity zone soil sampling, you know the residual soil nitrate level in each management zone, and you can choose different nitrogen fertilizer rates across the field.

If you only soil sample the surface soil depth (0-6 inch), you are missing 75% of the plant-available nitrate-nitrogen pie. To make good nitrogen decisions, you should collect 0-24 inch soil samples for soil nitrate-nitrogen analysis. In drought, plant roots explore deep for stored soil water and uptake whatever nitrate is found along the way. There is no way to model how much soil nitrate remains in the soil profile after drought. Following drought, the best strategy is 24-inch soil sampling and breaking fields into several management zones to determine the proper amount of nitrogen fertilizer required.