Optimizing Fertilizer Economics on the Prairies

Rigas Karamanos

Types of Operating Costs

- *****Essential: Seed.
- *****Enhancement: Fertilizer, Seed.
- *****Maintenance: Fertilizer, Herbicide.
- *Protection: Herbicide, Insecticide, Fungicide.
- Insurance: Herbicide, Insecticide, Fungicide, Fertilizer.*

- Assess the risks of what you are going to fertilize for
- Assess the risks of what you are going to fertilize with

 Assess the risks of what you are going to fertilize for

- First step in managing the soil is knowing what's in it!
 - Alleviate misconceptions about soil testing. It's only a tool and part of the overall assessment.
 - Chose a nutrient application philosophy that suits your style of management.

Soil Testing Is

A TOOL (yes, a tool not an absolute science) that allows producers to make more qualified fertility management decisions based on soil nutrient inventory and interpretive criteria based on a specific philosophy.

Assess the risks of what you are going to fertilize with

Fundamental Principles: Fertilization

2 classes of nutrients to consider

Fertilizer affects the <u>current crop only</u>

- Fertilizer has little effect on subsequent crops
- Example: N applications
- Fertilizer affects <u>current and subsequent</u> <u>crops</u>
 - Fertilizer has a residual effect
 - Examples : P, K and S

Types of Operating Costs

- Essential: Seed.
- Enhancement: Fertilizer, Seed.
- Maintenance: Fertilizer, Herbicide.
- Protection: Herbicide, Insecticide, Fungicide.
- Insurance: Herbicide, Insecticide, Fungicide, Fertilizer.*

Nitrogen is the single most important nutrient and provides a response almost always when a soil is Nitrogen deficient.

Nitrogen #1 Nutrient in 8 Experiments in 2000

	Percentage of yield changes explained by Nitrogen	
Location	Wheat	Canola
Allan, SK	No response	97
Irricana, AB	84	43
Ft. Saskatchewan, AB	90	61
Rosser, MB	99.7	98

Probability of a Yield Increase due to Nitrogen Fertilizer Application on N deficient soils

Crop	Probability of Overall positive	Probability of response by a yield increase of:		yield
	Response	>10 bushels	>20 bushels	>30 bushels
Wheat	98.6%	70%	40%	<10%
Barley	99.3%	90%	80%	60%
Canola	100%	70%	25%	<10%

Average Yield Increases due to Nitrogen Fertilizer Application on N deficient soils

	Optimur N/acre	n Nitroge	en fertili	zer rate,	lb
Crop	<40	40-60	60-80	80-100	>100
Barley	18	22	38	45	53
Wheat	7	15	19	25	32
Canola	9	12	15	18	23

What determines Maximum Yield?

Crop genetics Solar radiation WATER Nutrients

Let's go a bit back in time!

Probability of obtaining a yield increase (%)

Return on 66¢/ Ib N for Barley

Source: Westco 133 site years

Probability of wheat response to N

Source: Westco 129 site years

Probability of obtaining a yield increase (%)

Return on 66¢/ Ib N for Wheat

Source: Westco 129 site years

Do not forget the N power of your soil!

Nitrogen Mineralization

Organic	Mineralization		
Matter, %	N Pool	Maximum	"Normal"
2	116	84	37
3	174	145	64
4	232	193	85
5	290	242	106

Nitrogen Rate of Return Calculators for Brown, Dark Brown and Black soils

Net Return Parameters

- Net Return = (crop price x yield increase) -(Nutrient price x Nutrient rate)
- Specific to Nitrogen
 - Calculations are based on the premise that an "ideal" fertilization program results in 30 lb N/acre residual N in 0-24" depth
 - Current N rate from the soil test report or common practice
 - Net return in blue represents maximum for the CWRS Wheat/Barley:N Price Ratio range in the tables and in Orange/Brown within \$1.00 of maximum

No. of sites for Wheat

Basic concepts

Economic return comparisons to N fertilization are based on the principle of net return* as described by University of Wisconsin Professor M. Rankin (Rankin, 2005)

* Net Return = (crop price x yield increase) - (N price x N rate)

*Rankin, M. 2005. Nitrogen \$ Rate of Return Calculator Version 3. University of Wisconsin - Extension

Basic concepts

The grower does not set a yield goal, but selects their soil type. The maximum economical return to N is not based on yield goal, but is determined from the yield increase above where no N is applied. The total return is also supplied for reference and comparison purposes.

Basic concepts

In order to reduce the financial risk of fertilizing with high rates of N and not achieving these returns, you can demand a greater return on the last dollar spent on N fertilizer. This is determined by the marginal revenue which equals the marginal return: marginal cost. Maximum economic N rate occurs when the last increment (or dollar) spent on N returns a dollar value of crop.

Trends in urea price

Nitrogen \$ Rate of Return Calculator for the Brown Soil Zone

Fertilizer N data	
Fertilizer Type	UREA
Cost/tonne	\$1,350.00
%N	46
Cost/Unit of N	\$1.334
Fertilizer N	10
incremement	
Commodity price	\$0.40
increment, \$	
Soil test N (0-24") 65	
lb N/acre	
Yellow Cells Can be Modified	

Crop and Soil data	
Current N Rate (Ib N/acre):	
CWRS Wheat	50
Barley 60	
Expected prices (\$/bushel):	
CWRS Wheat	\$12.70
Barley	\$9.00

Nitrogen \$ Rate of Return Calculator for the Dark Brown Soil Zone

Fertilizer N data

Fertilizer Type	UREA	
Cost/tonne	\$1,350.00	
%N	46	
Cost/Unit of N	\$1.334	
Fertilizer N	10	
incremement		
Commodity price	\$0.40	
increment, \$		
Soil test N (0-24")	65	
lb N/acre		
Yellow Cells Can be Modified		

Crop and Soil data	
Current N Rate (Ib N/acre):	
CWRS Wheat	50
Barley 60	
Expected prices (\$/bushel):	
CWRS Wheat	\$12.70
Barley	\$9.00

Nitrogen Rate of Return Calculator Black Soil Zone

Fertilizer N data	
Fertilizer Type	UREA
Cost/tonne	\$1,350.00
%N	46
Cost/Unit of N	\$1.334
Fertilizer N 10	
incremement	
Commodity price	\$0.5
increment, \$	
Soil test N (0-24") 30	
lb N/acre	
Yellow Cells Can be Modified	

Crop and Soil data	
Current N Rate (Ib	N/acre):
CWRS Wheat	110
Barley 100	

Expected prices (\$/bushel):	
CWRS Wheat	\$11.00
Barley	\$8.50

Seeded acres in Manitoba

18 year % Change in yield in Manitoba

18 year Compound Annual Growth Rate in Manitoba

Seeded acres in Saskatchewan

18 year % Change in yield in Saskatchewan

18 year Compound Annual Growth Rate in Saskatchewan

Phosphorus

Trends in MAP price

Percentage of wheat responding sites to application of P as a function of Olsen soil test P*

*33 site years in AB, SK, MB

Return on 55¢/ Ib P₂O₅ for Wheat

Source: Westco 78 site years

Fertilization with Phosphorus

Soil P Checkbook	
Name:	Farmer
Field:	Home quarter
Legal Location:	Anywhere on the prairies
NFRZ:	Moist Parkland
Texture:	Loam
Irrigation:	No
Soil test (lb/ac) 0 - 6" ONLY:	77
Crop	Canola, Hybrid
Crop Yield (bu/ac):	65

FIELD IDENTIFICATION:										
	Name:	Farm	er		Legal Location: Anywhere on the prairies					
	Field:	Home	quarter		Irrigation: No					
FERTILIZER RECOMMENDATIONS										
	Target yield	65	bu/acre of	Canola, Hybrid						
P ₂ O ₅	B&I	59 15 44	Ib P₂O₅/ac Ib/ac towards s Ib/ac towards m	ufficiency aintenance						

Phosphate Rate of Return Calculator Wheat, Barley & Canola

Crop and Soil data					
Expected prices (\$/bushel):					
CWRS wheat	\$6.50				
Barley	\$3.50				
Canola	\$9.50				
Soil Test, ppm (0-6")	10				
Texture*	Loam				
*CAUTION: these entries are drop down lists					
Yellow Cells Can be Modified					

Fertilizer P ₂ O ₅ data						
Fertilizer Type	MAP					
Cost/tonne	\$1,200					
%P ₂ O ₅	52					
Price of UREA	\$900					
Cost/Unit of P ₂ O ₅	\$0.86					
Fertilizer P ₂ O ₅	5					
increment						
Crop price	\$0.5					
increment, \$						
Fertilizer price	<mark>\$1</mark> 00					
increment, \$						

Potassium and Sulphur

Micronutrients

- * Use micronutrients only if the crops need them!
- * No time now for use for insurance purposes!

How is the Economic Benefit Measured?

- Increased yield
- Improved quality (mostly perception)

How is the Economic Benefit <u>Not</u> Measured?

- In most cases when soil test value above critical level "marginal" range
- Increased tissue level as a result of a micronutrient application

Interpretation of Boron Soil Tests w. Canada 40 sites; yield 18-63 bu/ac

Mean Nitrogen Application Rate as a Function of Soil Test Levels

Copper Application Rate as a Function of Soil Test Levels

Add Crop and Soil Testing Information in this Section:

Soil test level	Texture	Сгор	Organic matter	pН
0.2	loam	wheat	<1.5	<8.0

Select Time of Placement

Options spring

Select Method of Placement

Options broadcast

Select Type of Product and Rate of Application

Product type sulphate Rate of application 3

Comments:

Chance of getting a yield increase

using the most suitable product and placement is:

between 50

and 75%

using the chosen product and placement:

between 50 and 75% between 50 a CAU between 50 CAUTION:

Interpretation of Soil Tests for Copper

- Based on 102 tests with spring wheat in western Canada
 - Deficient < 0.4 ppm (52 tests):
 - Average Cu test 0.24±0.09 ppm
 - 94% probability of obtaining an agronomic response
 - 62% probability of obtaining an economic response
 - Marginal 0.4 –0.6 ppm (50 tests)
 - Average Cu test 0.68±0.24 ppm
 - 16% probability of obtaining an agronomic response
 - 2% probability of obtaining an economic response

Statistical and Economic Characteristics for Deficient

- Micronutrient deficiencies not a widespread problem
- Copper is certainly the one to worry about for cereals and Zinc for dry beans and corn
- \$\$ Economics\$\$ should dictate application

Thank you

rkgeoponica@gmail.com