

Soil Health Indicators for Prairie Cropping Systems

Dr. Stephen Crittenden AGVISE Soil Fertility Seminar 11 & 13 March, 2025 Canada

Senate Report on Soil Health

Why Soil is Essential to Canada's Economic, Environmental, Human, and Social Health

"Soil is as critical as the air we breathe and the water we drink. Soil health is human health is *One Health*."

The Government of Canada should designate soil a strategic national asset

Critical Ground: Why Soft is Essential to Canada's Economic, Environmental, Human, and Social Health

National Soil Health Strategy in Canada

CONSULCANADIEN DE CONSULVATION DES SOLS

Possibility grows here.

Towards a National Soil Health Strategy in Canada

The NSHS will be an industry-led framework and plan for collective action to maintain and enhance the soils in Canada, with an immediate view (by 2030) and for the longer term (by 2050). Elements of that framework will be:

- 1. Articulation of the objectives the soil health strategy, including the selection of a definition of soil health for the purposes of the NSHS.
- 2. Setting goals for soil health and identifying tools to assess soil health at different scales, in order to better monitor how the state of soil is progressing.
- 3. Selection of priority actions that need to be taken to achieve the goals that are set.
- 4. Identification of priority research and analysis to assist in effectively implementing those actions.
- 5. Securing of resources, whether by individual stakeholders or collectively, to undertake both priority research and measurement and priority measures.
- 6. Establishment of a strategy governance system to enable continuing commitment and collaboration on meeting the soil health targets.
- 7. Creation of stakeholder engagement processes that permit the constant renewal of the NHSH and its implementation.

Soil health or healthy soil?

- Soil health is how the soil works together (functions)
- Interplay of biological, chemical, and physical aspects
- A 'healthy soil' depends on what you want
- The soil health balancing act
- Building climate resilient agro-ecosystems

What is soil health?

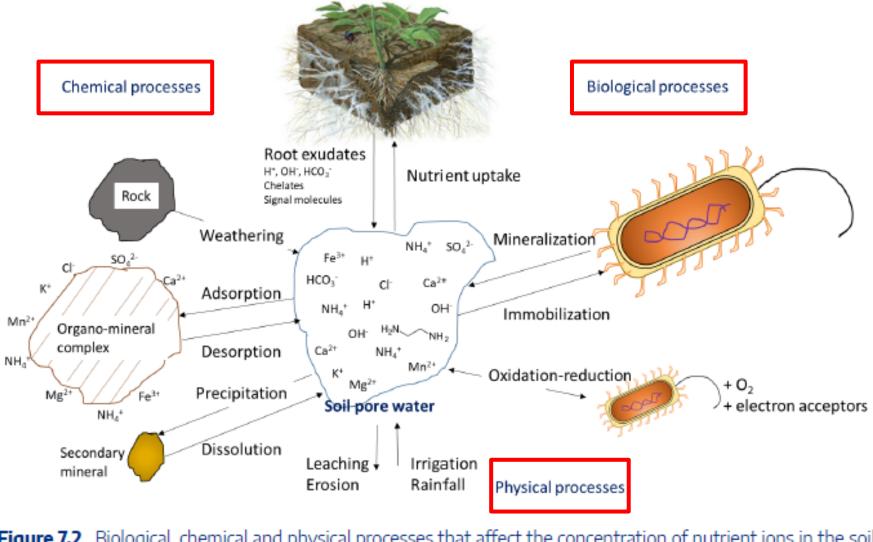


Figure 7.2. Biological, chemical and physical processes that affect the concentration of nutrient ions in the soil pore water. © Joann Whalen is licensed under a <u>CC BY (Attribution)</u> license.

Digging Into Canadian Soils https://openpress.usask.ca/soilscience/

Soil biology: Aporrectodea tuberculata

Soil Microbiome

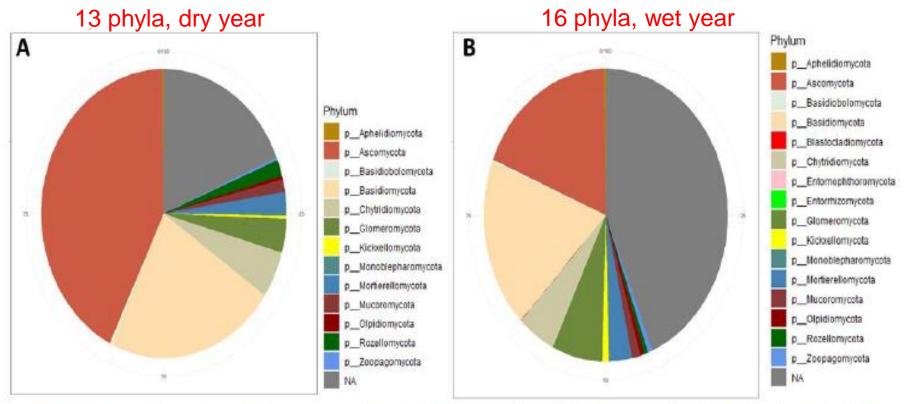


Figure 4. 3. A. Pie chart showing the average relative abundance of fungal phyla across all soil samples (n= 271) from Portage la Prairie (2021). B. Pie chart showing the average relative abundance of fungal phyla across all soil samples (n= 144) from Portage la Prairie (2022). Each segment of the graph corresponds to a specific fungal phylum, and the size of each segment represents the proportion or relative abundance of that phylum within the overall fungal community.

Mehrdad Mohammadiani and Matt Bakker

Soil Physics

Soil water infiltration: complex flow paths

14 75 76

29 99

22

54

Photo:Crittenden

Vertical flow

• Path of least resistance

Horizontal flow

- Compaction decreases porosity and connectivity
- Reducing infiltration and aeration
- Avoid driving on wet soil
- Recuperation is slow

Soil Chemistry

Farmers soil test for appropriate fertilizer application rates

Nitrate Phosphorus (Olsen) Potassium Org. matter Salts pH Soil texture

					_			_									
			Υ		50	IL TE	ST	REPOF	RT					Ņ			
(http://v Northwoo	by Agvise Laborator www.agvise.com) d: (701) 587-6010 g: (320) 843-4109	ies	S F () T S	FIELD ID CURREN PARK SAMPLE ID FIELD NAME COUNTY TWP 10-19 RANGE SECTION 28 QTR ACRES 25 PREV. CROP Wheat-Spring					V	WE							
FST	MITTED FOR:		e F	SUBMITTED BY: BR1813 BRANDON RESEARCH CENTER % ACCOUNTS PAYABLE PO BOX 1000A BRANDON, MB R7A 5Y3					13	S REF # 18805610 BOX # 1336 LAB # NW218283							
Date Sampled	Date Sampled Date Received 11/17/2020 Date Reported 2/17/2021																
Nutrient I	n The Soil	In	terp	retat	ion	15	t Cro	p Choic	e	2 n	d Crop Choice 3rd Crop Choi				ice		
		VLow	Low	Med	High		Can	ola-bu			Soyb	eans		Corn-Grain			
0-6"	29 lb/acre			YIELD GOAL			YIELD GOAL			YIELD GOAL							
6-24"	45 lb/acre				40 BU					50	BU 100 BU						
0-24''	74 lb/acre			SUGGESTED GUIDELINES SUG				SUG	SESTED	GUIDELINE	s	SUG	GESTE	GUIDE	LINES		
Nitrate	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						В	and			Ba	Sand Band					
Nitrate						LB/A	CRE	APPLICA	TION	LB/A	CRE	RE APPLICATION		LB/A	CRE	APPLI	CATION
Olsen	22 ppm					N	66		_	N	•••			N	46		
Potassium	467 ppm					P ₂ O ₅	10	Ban (Starte		P ₂ O ₅	12	Band *		P ₂ O ₅	15	Band	(2x2) *
0-24" Chloride	44 lb/acre	•••••		• • • • • • •		K ₂ O	o			K ₂ 0	0			K ₂ O	10	Band	(2x2) *
0-6" 6-24" Sulfur	62 lb/acre 120 lb/acre				• • • • • • •	сі		Not Availat		сі	0			сі		Not Av	ailable
Boron	1.4 ppm					s	10	Band		s	0			s	0		
Zinc	1.12 ppm					в	0			в	0			в	0		
Iron	34.6 ppm					Zn	0			Zn	0			Zn	0		
Manganese	6.6 ppm					Fe	0			Fe	0			Fe	0		
Copper	1.69 ppm					Mn	0			Mn	0			Mn	0		
Magnesium	1122 ppm	•••••				Cu	0			Cu	0			Cu	0		
Calcium	5593 ppm					Mg	0		_	Mg	0			Mg	0		
Sodium	48 ppm					Lime				Lime			_	Lime		+	
Org.Matter	4.6 %										0/s Bac				unical Parasa)		
Carbonate(CCE)	2.9 %					Soil p	H B	Suffer pH		on Exch Capacit	-	% Base Sa % Ca %		_	<u>п (тур</u> % к	% Na	% H
0-6" 6-24"	0.66 mmho/cm 0.74 mmho/cm	•••••				0-6* 7				38.7 me		(65-75) 72.2	(15		1-7)	(0-5)	(0-5) 0.0

Media Headlines

- Soil's complexity must be understood (McCain, soil biodiversity, DNA barcoding)
- To manage your fields for optimum yields, start with soil health ("Decisive Farming by TELUS Agriculture agronomists review soil tests and develop specific recommendations"

Lofty Claims

What's critical about soil health now?

- World population is projected to increase from 7 billion in 2013 to more than 9 billion in 2050. To sustain this level of growth, food production will need to rise by 70 percent.
- Between 1982–2007, 14 million acres of prime farmland in the U.S. were lost to development.
- 3. Improving soil health is key to long-term, sustainable agricultural production.

Soil health matters because:

- 1. Healthy soils are high-performing, productive soils.
- 2. Healthy soils reduce production costs-and improve profits.
- 3. Healthy soils protect natural resources on and off the farm.
- Franklin Roosevelt's statement, "The nation that destroys its soil destroys itself," is as true today as it was 75 years ago.
- Healthy soils can reduce nutrient loading and sediment runoff, increase efficiencies, and sustain wildlife habitat.

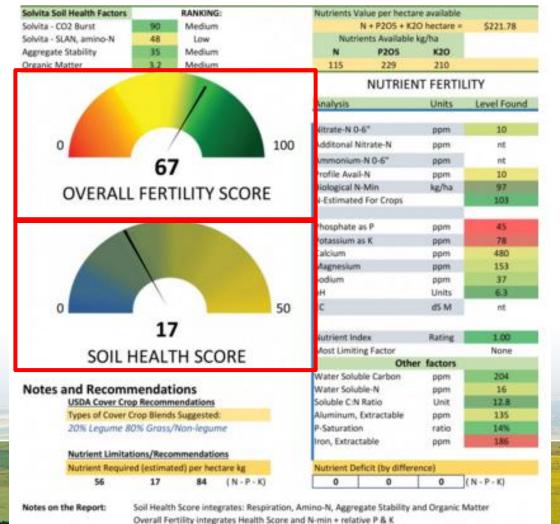
What are the benefits of healthy soil?

- Healthy soil holds more water (by binding it to organic matter), and loses less water to runoff and evaporation.
- Organic matter builds as tillage declines and plants and residue cover the soil. Organic matter holds 18-20 times its weight in water and recycles nutrients for plants to use.
- One percent of organic matter in the top six inches of soil would hold approximately 27,000 gallons of water per acre!
- Most farmers can increase their soil organic matter in three to 10 years if they are motivated about adopting conservation practices to achieve this goal.

Healthy soils are high-performing, productive soils

Healthy soils reduce productions costs – and improve profits

Healthy soils protect natural resources on and off the farm



Cornell Assessment of Soil Health

Test Report Measured Soil Textural Class: sandy loam Sand: 59% - Silt: 36% - Clay: 5% Group Indicator Value Rating Constraints physical Available Water Capacity 0.09 28 physical Surface Hardness 255 Rooting, Water Transmission 14 physical Subsurface Hardness 400 18 Subsurface Pan/Deep Compaction, Deep Rooting, Water and Nutrient Access physical Aggregate Stability 56.4 76 biological **Organic Matter** 2.1 54 ACE Soil Protein Index biological 6.9 44 biological Soil Respiration 0.6 55 biological Active Carbon 359 32 chemical Soil pH 5.9 54 chemical Extractable Phosphorus 2.3 66 chemical Extractable Potassium 175.3 100 chemical Minor Elements 100 Mg: 134.0 / Fe: 3.4 / Mn: 2.7 / Zr 1.3 Overall Quality Score: 53 / Medium

Example soil health report

More questions than answers?

- Unsure how to interpret soil health indicators
- How to go from soil health data to management

The second second

Soil health has become an emergent focus of contempo cultural research, yet little work has addressed how soil health data - and biological indicators in particular - are interpreted by farmers and potentially incorporated into their decision-making. address this gap, in-depth interviews were conducted with 20 Ohio ers after sharing a soil health report that detailed phychemical, and biological indicators from at least two sampled field from their farms. Research findings demonstrate that while farmer pressed strong interest in soil biological health indicators spe ally, the data often raised more questions than answers fo participants. Specifically, three main themes emerged in the inter-views: 1) uncertainties in interpreting the soil health indicators, 2] ns regarding translation of soil health data into m ment, and 3) affirmation of existing management choices. The first two response themes point to a need for greater access and exposure to soil health data to facilitate inter pretation. Furthermore, researchers and extension agents can play a critical role in guiding recommendations for potential application of soil health data in on-farm management. While research on soil health has widely expanded in recent years, this study highlights the need for greater attention to its translational science and the co-production of knowledg

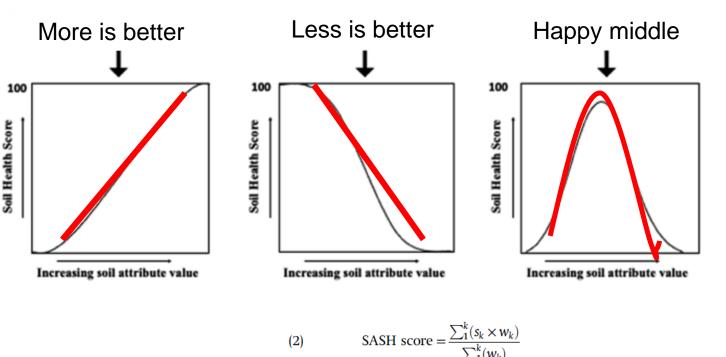
AGROECOLOGY AND SUSTAINABLE FOOD SYSTEMS https://doi.org/10.1080/21683565.2023.2270928

Check for updates

"More questions than answers": Ohio farmers' perceptions of novel soil health data and their utility for on-farm management

Prabhjot Singh^{a,b}, Nicholas C. Kawa^{b,c}, and Christine D. Sprunger^{a,d,e}

Our objectives


- Understand the utility of soil health indicators for producers
 - Correlate soil health indicators to agronomic outcomes (i.e., crop yield, seed protein content, and seed oil content)
 - How soil health indicators inter-relate with each other

Soil Health Index

Step 3) Model the relationship between the soil attribute value and the Soil Health Score, based on the *type of scoring function*

17

SOIL HEALTH SCORE

where *s* represents the soil health score (0–100) for each individual soil attribute and *w* is the corresponding weighting factor. Then, the score for the three depth increments was averaged for a single, overall

Saskatchewan Assessment of Soil Health (SASH)

A soil health scoring framework for arable cropping systems in Saskatchewan, Canada¹ Qianyi Wu and Kate A. Congreves

Can. J. Soil Sci. 102: 341–358 (2022) dx.doi.org/10.1139/cjss-2021-0045

Soil Health in SK

Table 3. The correlation between the Saskatchewan Assessment of Soil Health (SASH) score and average cereal crop yields obtained from rural municipalities from 2009 to 2019.

	Correlation between ce health (Pearson's coeffi	× •	Crop yields (Mg∙ha ⁻¹)	Precipitation (mm)		
Year	SASH score (0–15 cm)	SASH score (0–60 cm)	(min, median, max)	(annual, April–June)		
2009	0.64*	0.63*	1.7, 2.4, 3.0	389.6, 1 08.6		
2010	0.09	0.13	2.1, 2.3, 2.7	550.3, 242.0		
2011	-0.28	-0.08	2.0, 2.7, 3.3	409.7, 162.7		
2012	0.22	0.21	1.8, 2.4, 3.5	446.6, 207.8		
2013	0.24	0.26	2.6, 3.6, 3.8	372.8, 139.9		
2014	0.37	0.34	2.1, 2.7, 3.2	443.9, 205.4		
2015	0.47 [†]	0.65*	2.0, 2.6, 3.2	373.7, 69.0		
2016	0.34	0.29	2.3, 3.3, 4.0	478.6, 144.8		
2017	0.28	0.21	2.4, 2.9, 3.9	310.0, 108.5		
2018	0.43 [‡]	0.32	1.7, 2.8, 3.9	319.0, 104.7		
5 year (2014–2018)	0.47^{\dagger}	0.44 [‡]	2.4, 2.7, 3.4	385.2, 126.5		
10 year (2009–2018)	0.41 [‡]	0.41 [‡]	2.2, 2.8, 3.1	409.5, 149.3		

Note: Significant correlations are bolded and indicated at p < 0.05 (*), p < 0.1 ([†]), and p < 0.15 ([‡]). Cereal crop yield and precipitation data are included for each year.

A soil health scoring framework for arable cropping systems in Saskatchewan, Canada¹ Qianyi Wu and Kate A. Congreves

Can. J. Soil Sci. 102: 341-358 (2022) dx.doi.org/10.1139/cjss-2021-0045

Soil Health and Yield Don't Always Match

b

а

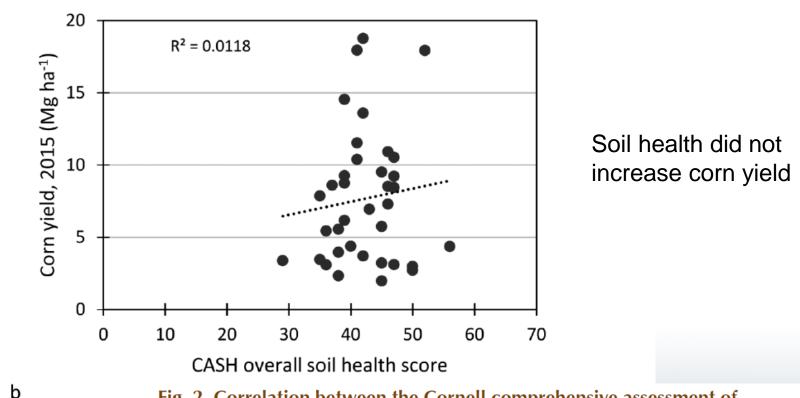


Fig. 2. Correlation between the Cornell comprehensive assessment of soil health (CASH) overall soil health scores and recent crop yields (Mg ha⁻¹) for soils of the piedmont (a) and mountain (b) trials. Each solid circle on the graph represents an individual research plot.

Roper, W.R., Osmond, D.L., Heitman, J.L., Wagger, M.G. and Reberg-Horton, S.C. (2017), Soil Health Indicators Do Not Differentiate among Agronomic Management Systems in North Carolina Soils. Soil Science Society of America Journal, 81: 828-843. https://doi.org/10.2136/sssaj2016.12.040

What components of soil health impact on agronomy?

- Two field experiments in MB
- Tillage experiment at Portage la Prairie
- Crop sequence experiment at Morden
- Which of 20 soil health indicators related to crop yield, seed protein, and seed oil?

Tillage is still a question in MB

Table 1. Percentage of land prepared for seeding using various tillage systems in the Canadian prairie provinces from 1991 to 2016. Adapted from Statistics Canada (2019b).

Province	Tillaga gystamt	Percentage of land prepared for seeding								
Province	Tillage system† —	1991	2006	2011	2016					
Manitoba	Conventional	66	43	38	41					
Marinto Da	Conservation	29	35	38	39					
	No-till	5	21	24	20					
Saskatchewan	Conventional	64	18	10	7					
	Conservation	26	22	20	19					
	No-till	10	60	70	74					
Alberta	Conventional	73	25	13	12					
	Conservation	24	28	22	19					
	No-till	3	48	65	69					

† Tillage systems in the Statistics Canada census questionnaires were defined for conventional, conservation, and no-till, respectively, as tillage that incorporates most of the crop residue into the soil, no-till or zero-till seeding (including direct seeding into undisturbed stubble or sod), and tillage that retains most of the crop residue on the surface (including minimum tillage) Statistics Canada (2019b).

Page Alexand

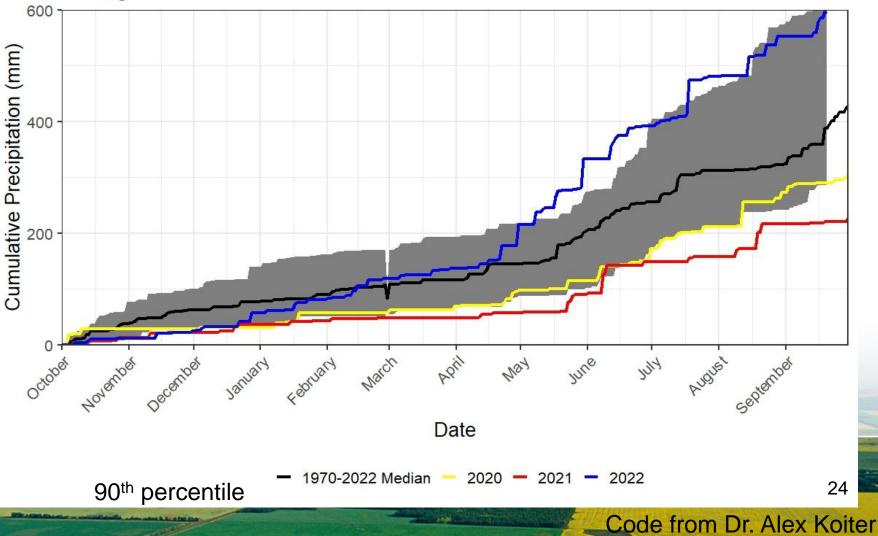
Journal of Environmental Quality

1357

Tillage systems

Cultivator

Deep



Vertical

Raised beds subsoiled, rototilled, and then shaped

Precip. outside normal

Water Year (Oct-Sept) Cumulative Precipitation Portage MB

What did we measure?

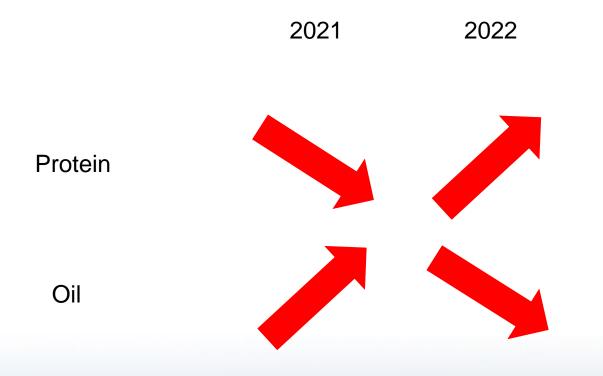
 pH, soil organic matter, nitrate, ammonium, Olsen-P, K, S, CO2, texture, total C, CCE, TOC, POXC, ACE protein, water extractable (total N, ammonium, organic N, organic C)

Tillage on crop yield

In a dry year, lower disturbance tillage gave a yield bump for soybean but not corn. Soil nitrate was most sensitive to tillage management and related to corn yield. Soybean yield related to soil S, K, Olsen P, and water extractable NH4 and OC.

	2020					20	2022					
	СТ	DT	RB	VT	СТ	DT	RB	VT	СТ	DT	RB	VT
Canola	26	23	18	23	5	7	6	4	43	51	46	47
Corn	124	131	126	124	137b	167a	168a	143ab	166	141	158	150
Soybean	48	45	46	49	59a	51ab	47b	56ab	80	78	76	74

Table 1: Crop yields (bu/ac) for conventional tillage (CT), deep tillage (DT), raised bed (RB), and vertical tillage (VT) at AAFC Portage la Prairie. Letters beside values indicate statistical significance between tillage systems within each crop and year


Tillage on protein

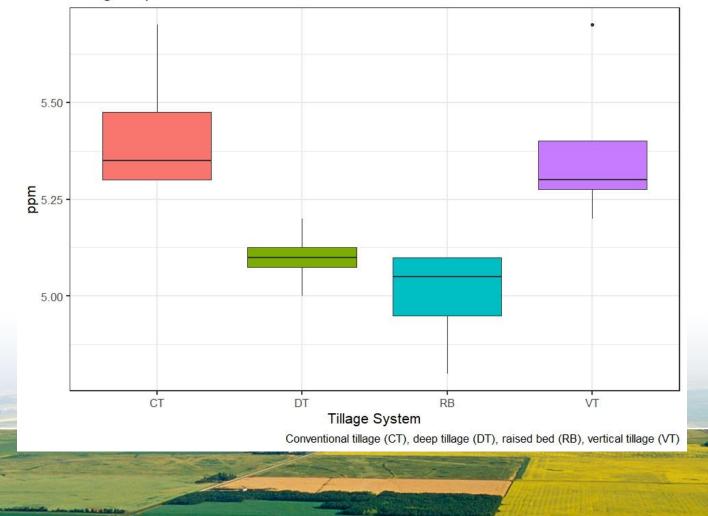
In a wet year, protein was lower in vertical tillage for soybean and canola. Protein and oil most related to soil pH, SOC/SOM, CCE, ACE protein, and K.

	2020				2022							
	СТ	DT	RB	VT	СТ	DT	RB	VT	СТ	DT	RB	VT
Са	21.8ab	21.7ab	22.8a	21.4b	23.9a	23.3ab	22.9b	24.0a	21.8	21.6	21.7	21.3
Со	9.3	9.1	9.4	9.1	9.3	9.2	9.4	9.2	8.5	8.3	8.6	8.4
So	39.8a	39.9a	39.6ab	39.0b	38.5ab	38.8ab	39.3a	38.0b	38.0	37.9	37.9	37.8

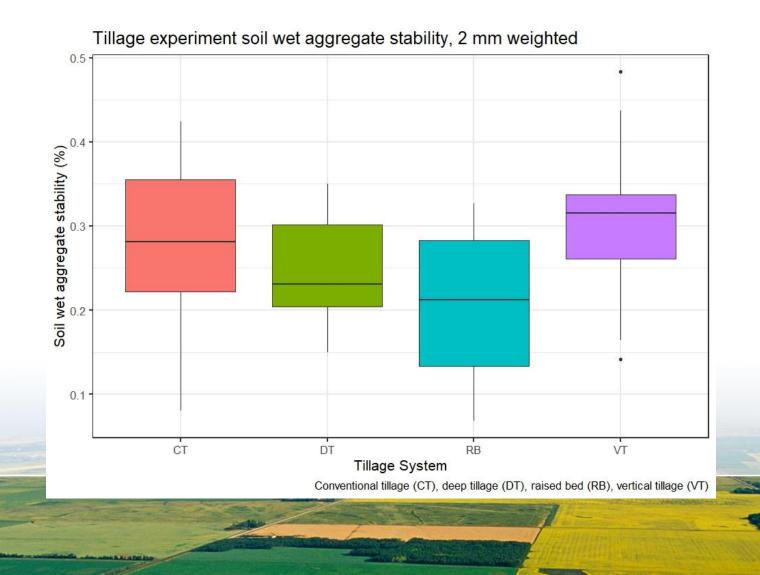
Table 2: Seed protein levels (%) for conventional tillage (CT), deep tillage (DT), raised bed (RB), and vertical tillage (VT) at AAFC Portage la Prairie. Letters beside values indicate statistical significance between tillage systems within each crop and year.

Soil organic carbon

Soybean


	2021	2022
Yield (bu/ac)	53	77
Protein (%)	39.6	37.9

Same pattern as POXC and ACE protein, Solvita CO2 no relation

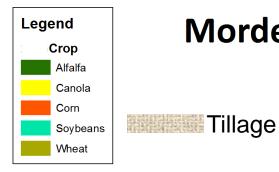

Stephen Crittenden, Curtis Cavers, and Zisheng Xing. 2024. The effect of four tillage systems on agronomic properties and soil health indicators in southern Manitoba. Canadian Journal of Soil Science. 104(3): 273-282. https://doi.org/10.1139/cjss-2023-0100

Organic Carbon

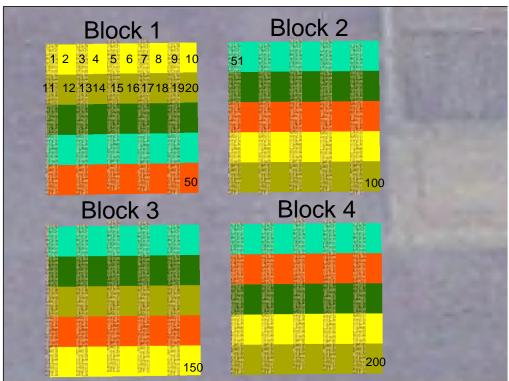
Tillage experiment TOC 5 cm

Aggregation and tillage

Conclusions from tillage

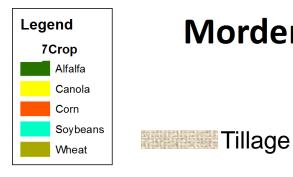

- Tillage system effected soil nitrate more than other indicators
- Soil health indicators meant to describe soil C and N pools were not strongly positively associated
- Soil health indicators correlated with agronomic responses in soybean more than canola and corn

https://cdnsciencepub.com/doi/pdf/10.1139/cjss-2023-0100

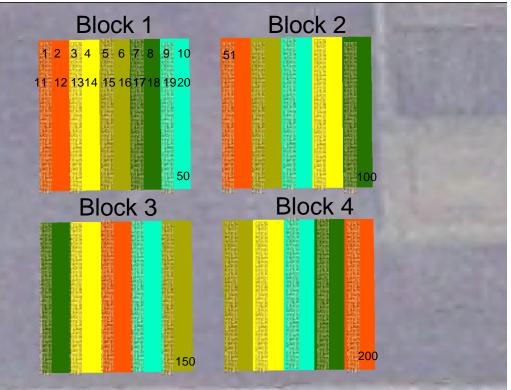

Soil Fertility and Crop Rotation Planning

- Crop rotation as a disease management tool
- Rotation effects on insects
- Crop rotation on soil moisture availability and nutrient supplies
- Integrated weed management (seeding rates, spacing, depth)

Year 1

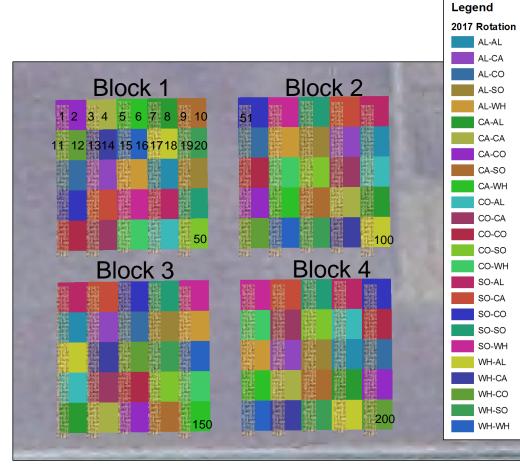


Morden Research and Development Centre Matrix Project

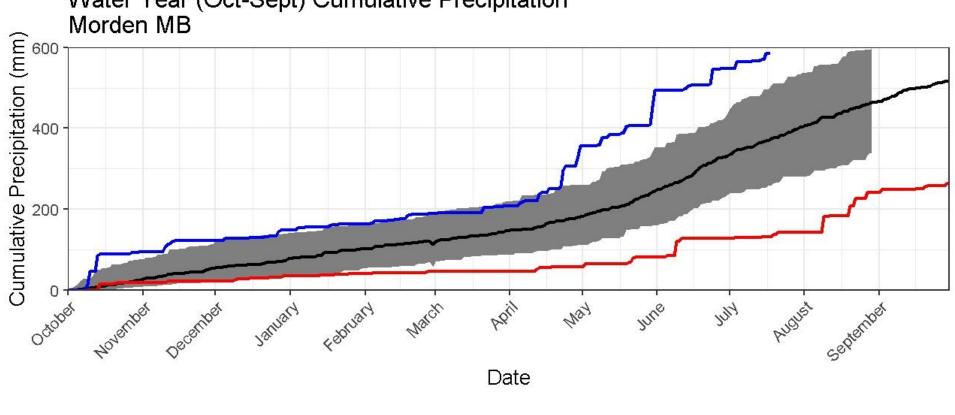


In Yr 0 everything is wheat. In Yr 1 crops were seeded west/east and tillage is north/south. Soil properties and agronomy (yield etc...) were sampled by plot (i.e., the 25 plots that were created in yr 2) as per the little black numbers

Year 2


Morden Research and Development Centre Matrix Project

In yr 2 crops were seeded north to south


Yr 2 Crop Sequence combinations plus tillage 5 crops x 5 crops x 2 tillage systems by 4 blocks

Morden Research and Development Centre Matrix Project

In Yr 1 soil health can be compared but agronomic properties not.

In Yr 2, we should have repeated measures for the agronomy and soil. In Yr 2 the agronomic comparisons should be within each crop,

Water Year (Oct-Sept) Cumulative Precipitation

1960-2020 Median - 2021 - 2022

Code from Dr. Alex Koiter

Table 1. Yield response of Manitoba crops sown on large (>120 acre) fields of various previous crops (stubble) in rotation (% of 2011-2020 average relative yields).

Previous	Crop Planted											
Crop		Winter Wheat	Oat	Barley	Canola	Flax	Pea	Soybean	Navy Bean	Sunflower	Corn	Potato
Spring Wheat	85	95	93	95	101	102	101	101	111	102	96	100
Winter Wheat	76	66	90	100	94	95	99	104	104	103	87	73
Oat	90	93	77	75	98	98	91	99	86	99	95	98
Barley	86	100	90	79	99	103	87	98	103	98	91	100
Canola	100	103	100	102	93	93	104	100	89	87	98	103
Flax	95	107	91	102	100	81	90	100	NSD	89	97	NSD
Pea	104	86	106	104	107	126	NSD	99	NSD	74	99	NSD
Soybean	107	100	109	110	102	106	106	95	NSD	108	102	89
Navy Bean	111	NSD	114	112	101	NSD	NSD	113	91	NSD	110	96
Sunflower	94	NSD	101	104	91	95	NSD	91	NSD	NSD	87	NSD
Corn	99	NSD	109	93	108	114	96	98	111	112	90	118
Potato	100	NSD	85	103	105	NSD	NSD	97	126	NSD	107	96

NSD = Not sufficient data to provide analysis. Source: Manitoba Agricultural Services Corporation (MASC) Harvest Production Reports

Preceding crop on yield

Soybean bumped yield of canola and wheat compared to alfalfa. Yield related to SOM, P, CCE, and water extractable total N.

$ \begin{array}{c} \text{Crop in} \\ \text{2022} \rightarrow \end{array} $	Alfalfa ¹	Canola	Corn	Soyl	bean	Wheat	
Tillage→				Conv	Zero*		
Preceding crop ↓							
Alfalfa	0.94 a	29b	72b	45	31	23b	
Canola	0.60 bc	38a	93ab	41	38	36a	
Corn	0.77 b	37a	75ab	40	43	33ab	
Soybean	0.55 bc	39a	93ab	38	51	38a	
Wheat	0.54 c	38a	97a	41	47	34ab	

Table 3. Preceding crop and tillage effects on crop yields at AAFC Morden. Letters beside values indicate statistical significance between preceding crop. Tillage was conventional (conv) or zero-till (zero).

*Soybean had significantly greater crop yield in zero-till (42%) compared to conventional (41%), but no effect of preceding crop. ¹ ton/acre

Preceding crop on protein

No difference in protein of crop following soybean. Soil nitrate and CO2 related to soybean seed protein.

$ \begin{array}{c} \text{Crop in} \\ \text{2022} \end{array} $	Canola	Corn	Soybean	Wheat		
Preceding crop ↓						
Alfalfa	20.6ab	7.5	37.8ab	13.7ab		
Canola	20.8ab	7.1	37.6a	13.7ab		
Corn	20.3b	6.6	36.8b	13.2b		
Soybean	21.4ab	6.8	37.1b	13.8ab		
Wheat	21.9a	7.1	37.2ab	14.5a		

Table 4. Preceding crop and tillage effects on seed protein at AAFC Morden. Letters beside values indicate statistical significance between preceding crop.*

Conclusions from crop sequence

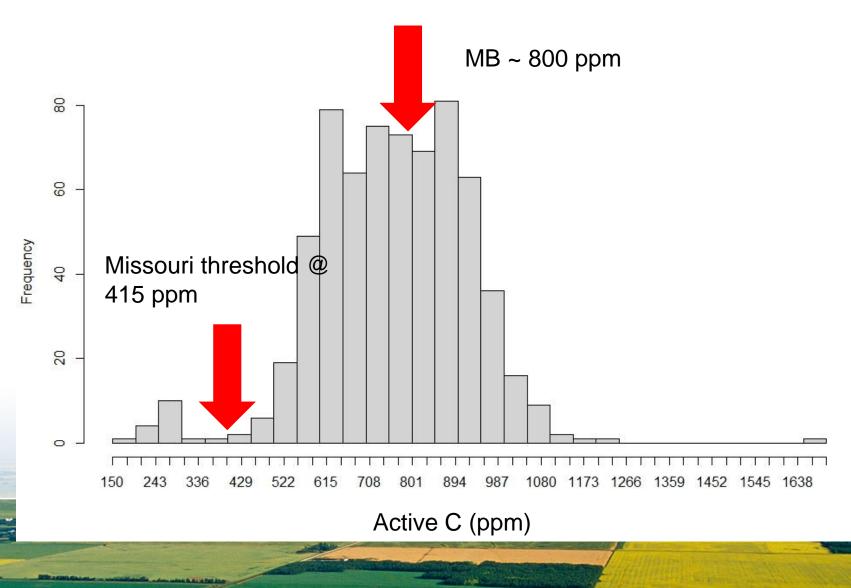
- Nitrate strongest with crop yield, then pH, P, and S, then ACE Protein, Solvita, POXC, and K
- Nitrate, SOC, ACE protein, Solvita strongest with seed protein, then SOM and pH

Take aways from experimental data on soil health

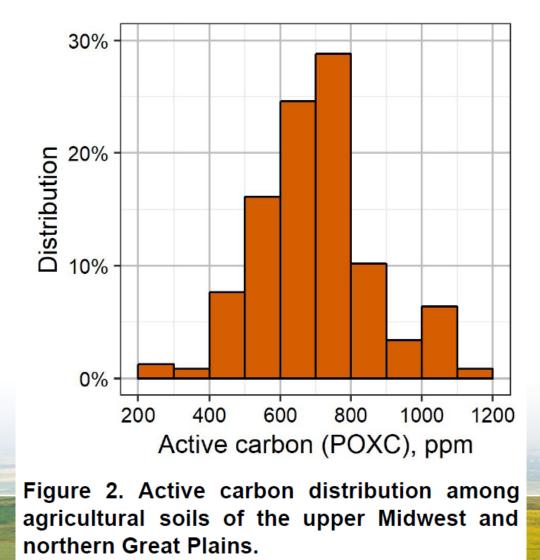
- The direction and magnitude of the interactions of soil health with crop agronomic properties is crop and weather dependent.
- Soil health scoring functions may not apply in all growing conditions and crops consistently from year to year

Active Carbon

"The active soil C measured by the new procedure was more sensitive to management effects than total organic C, and more closely related to biologically mediated soil properties, such as respiration, microbial biomass and aggregation, than several other measures of soil organic C"

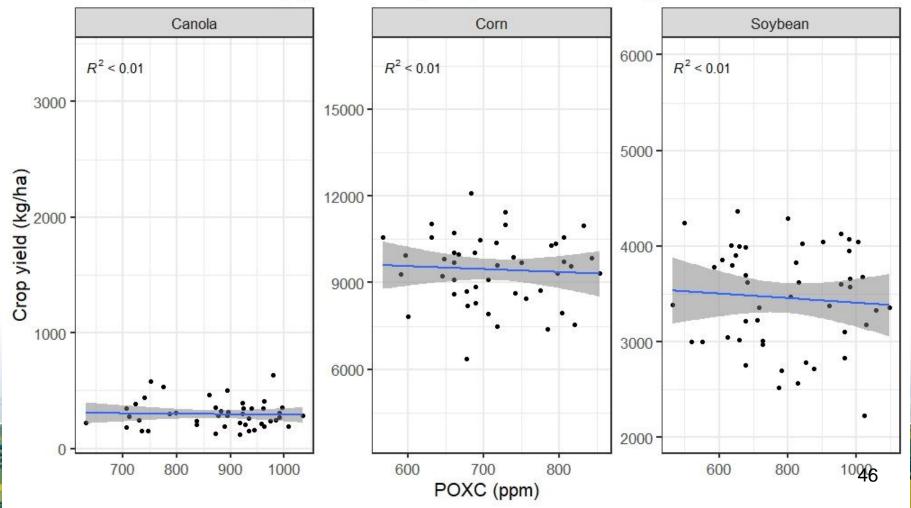

Weil, R., Islam, K., Stine, M., Gruver, J., & Samson-Liebig, S. (2003). Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18(1), 3-17. doi:10.1079/AJAA200228

Agronomic interpretation of active carbon

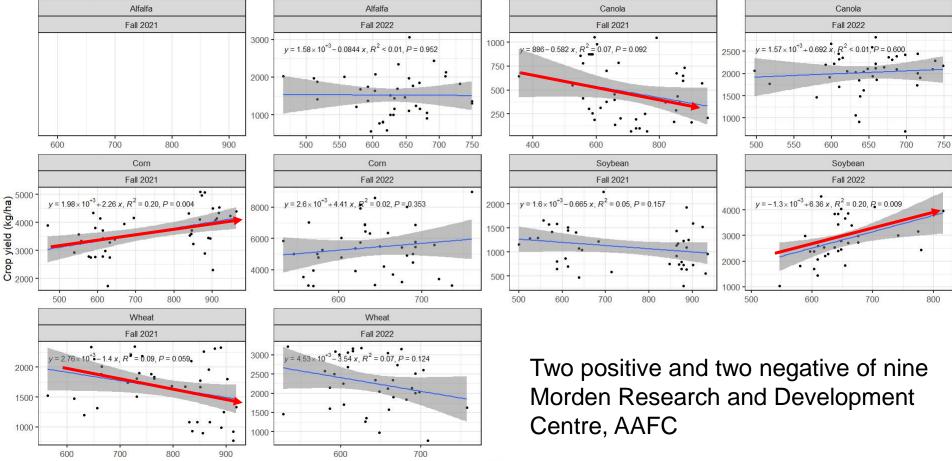

- Active carbon a factor influencing grain productivity
- Corn grain yield at 446 sites in Missouri
- 415 mg POXC kg-1, threshold for maximum grain productivity
- Neither ACE protein nor CO2 burst related to productivity

Svedin, J. D., Veum, K. S., Ransom, C. J., Kitchen, N. R., & Anderson, S. H. (2023). An identified agronomic interpretation for potassium permanganate oxidizatile carbon. Soil Science Society of America Journal, 87, 291–308. https://doi.org/10.1002/saj2.20499

Active C in MB

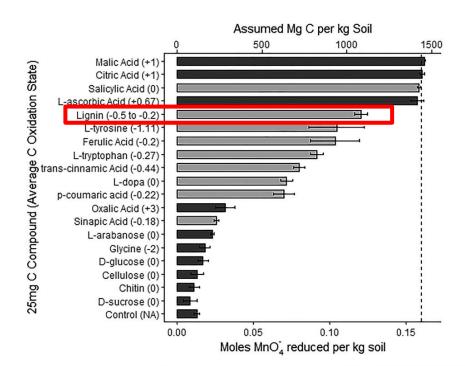


Active carbon in region

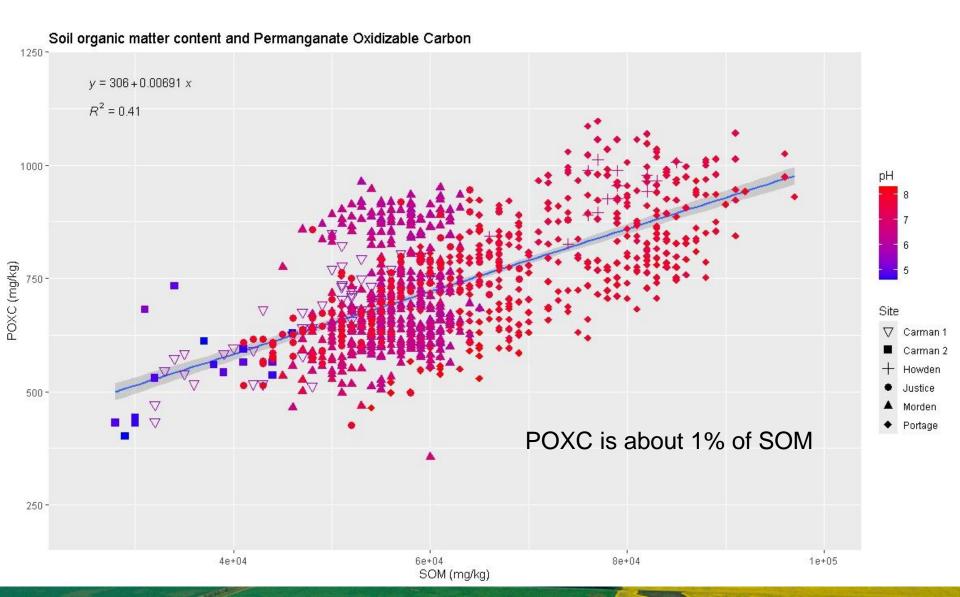

Active C did not relate to crop yield

POXC related to crop yield in tillage experiment at Portage

POXC v yield


Matrix crop sequence

POXC (ppm)


Revisiting Active C

- "POXC (Active C) does not measure the labile SOC pool the POXC assay was developed to quantify"
- Measures chemical lability not biological
- Recalcitrant material like lignin are oxidized

Woodings, F. S., & Margenot, A. J. (2023). Revisiting the permanganate oxidizable carbon (POXC) assay assumptions: POXC is lignin sensitive. *Agricultural & Environmental Letters*, 8, e20108. https://con.org/10.1002/aei2.20108

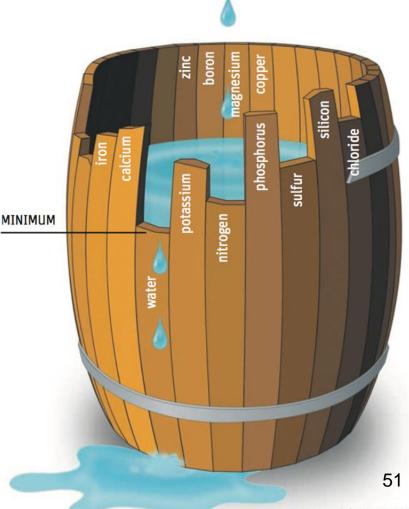
Active Carbon vs. SOM

Is it worth it?

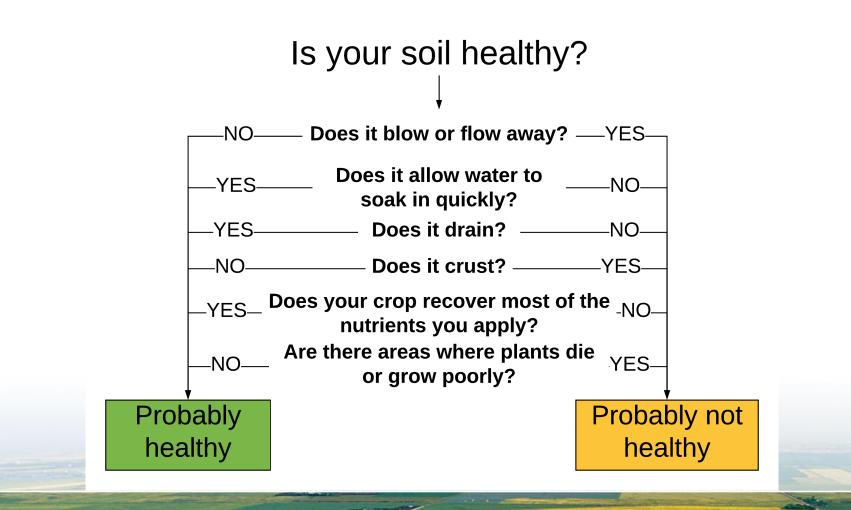
POXC \$22.55 US / SOM (LOI) \$4.45 US

Across both experiments, soil organic matter (SOM) significantly related to agronomic properties 15 times whereas POXC 13 times.

Where is soil health?


This is all soil health. Additional indicators can be useful but probably shouldn't replace NPKS, pH, EC, SOM.

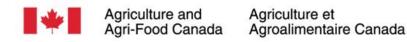
For example, soil health indicators related to nitrogen fit into the stave of the barrel.


LAW OF THE MINIMUM - LIEBIG'S LAW

Justus von Liebig formulated the law of the minimum: if one crop nutrient is missing or deficient, plant growth will be poor, even if the other elements are abundant.

The analogy for the potential of a crop is a barrel with staves of unequal lengths. The capacity of the barrel, a crop's yield, is limited by the length of the shortest stave and can be increased only by lengthening that stave. When that stave is lengthened, another one becomes the limiting factor.

Remove major threats first


Soil (health) evaluation begins by asking "What's the problem with my soil?" | CSANR | Washington State University (wsu ed

Why pay attention to soil health?

- To help you make decisions
 - Benchmarking
 - Track with time
 - Shift in management
 - Spatial variability
 - Topography
 - Salinity
 - Potholes

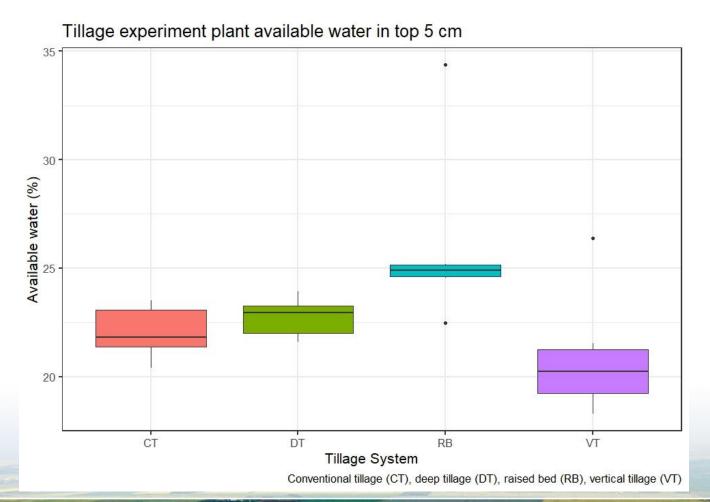
Conclusion

- Soil test don't guess
- Oldies are still goodies, use other soil tests for specific questions

Acknowledgements

- Tyler Ward, Ming Li, Autumn Wiebe, Curtis Cavers, Zisheng Xing, Scott Duguid, Oscar Molina, Steve Sager, Yvonne Lawley
- MB Ag Action
- MPSG
- MCGA

Thank you!


For more information, please contact: Stephen.Crittenden@agr.gc.ca

Plant available water

Raised beds had significantly greater plant available water than vertical tillage