Predicting Crop Responses to Fertilizer: Not as Simple as Some People Think

Don Flaten, Professor Emeritus, University of Manitoba AGVISE Soil Fertility Seminar, March 2024

Last slide ...

Annual soil testing is a <u>useful</u> fertilizer planning tool (like a financial budget)

... and an <u>excellent</u> fertilizer program auditing tool (like a bank statement)

i w t t t t t t t t t t t t t t t t t t	FIRST BANK OF WIKI Nowhere Branch Anywhere Manitoba	CHEQUING ACCOUNT STATEMENT Page : 1 of 1			
BUOS	Joe and Josephine Farmer Box 1234 Anywhere Manitoba	Statement period Account No. 2003-10-09 to 2003-11-08 00005- 123-456-7			
	Date Description	Ref. Withdrawals Deposits Balance			

Factors affecting agronomic crop response to fertilizer:

 i) crop's nutrient <u>requirements</u>, considering crop species & variety or hybrid, yield potential, soil, weather, etc.

ii) crop's ability to use soil's nutrient supply

iii) fertilizer use <u>efficiency</u> for different sources, timings & placements

Long term regional variability in growing season moisture deficits

Plus short term spatial and temporal variability in precipitation ... e.g. Low reserves of soil moisture in fall 2023

https://www.grainews.ca/columns/a-new-year-a-new-soil-moisture-map/

y a

plus low snowfall in winter 2023-2024 = High risk of drought

Canadian Drought Monitor

Conditions as of January 31, 2024

Yield potential also varies substantially within most fields ... due to variation in moisture, nutrients, salinity, etc.

Factors affecting agronomic crop response to fertilizer:

- i) crop's nutrient <u>requirements</u>, considering crop species & variety, yield potential, soil, weather, etc.
- ii) crop's ability to use soil's nutrient supply
 - soil's power to supply nutrients over growing season
 - chemical extractants or ion exchange membranes provide rapid analysis that imitates plant extraction of nutrients
 - net release of additional nutrients during the growing season ... e.g., N mineralization from more decomposition than formation of soil org. matter
 - crop's ability to extract nutrients from soil ... which varies with species and cultivar, especially for P and K
- iii) fertilizer use <u>efficiency</u> for different sources, timings & placements

But what about the <u>economic</u> response?

Unstable prices for fertilizer Jan 2019 - Jan 2024

Source: Alberta Agriculture and Irrigation, Farm Input Prices as of Dec. 31, 2023 https://www.agric.gov.ab.ca/app21/farminputprices

Unstable and falling prices for crops

iy Da

At the high stakes poker table ...

Unstable prices for fertilizer and falling prices for crops ... plus low reserves of soil moisture ... have increased the financial <u>risks</u> from over- or under-fertilizing ... so determining the "Right Rate" is <u>extremely important</u>

Dealing with variability in crop response to N fertilizer and N fertility

Conceptual Overview of Effect of N Fertilizer Rate on Canola Yield

Conceptual Overview of Effect of N Fertilizer Rate on Canola Revenue and Fertilizer Cost

Conceptual Overview of Effect of N Fertilizer Rate on Canola Revenue and Fertilizer Cost

All you need to know is exactly what your yield response will be ... along with fertilizer and crop prices

Economic optimum rates of fertilizer vary with fertilizer & crop prices ... e.g., Manitoba N Rate Calculator for wheat, barley & canola ... note the blue & red cells indicating +/- \$0.50 & \$1/acre returns

Nitrogen \$ Rate of Return Calculator									
		mann	oba (A	"					
Return to	<u>o Canola (h</u>	<u>ybrid) as variable</u>	<u>Go to Mar</u>	rginal Retu	<u>ırn Chart</u>		<u>Retu</u>	<u>rn to Data</u>	Entry
Crop/Fertilizer N data									
Crop CANOLA					Expected	d N Fertil	izer Price)	
\$/bushel \$9.00									
Fertilizer N 10			\$400	\$500	\$600	\$700	\$800	\$900	\$1,000
increment		Yield							
Fertilizer price \$100.00		Increase			Net	Return (\$	/ac.)**		
increment, \$	N Rate	from 0 lb. N*			Cano	la:N Price	e Ratio		
Soil test N (0-24") 33	(lb./acre)	(bu./ac.)	22.8	18.2	15.2	13.0	11.4	10.1	9.1
lb N/acre	100	14.9	\$94.3	\$84.4	\$74.5	\$64.7	\$54.8	\$44.9	\$35.0
	110	15.8	\$98.8	\$87.9	\$77.0	\$66.2	\$55.3	\$44.4	\$33.6
	120	16.6	\$102.4	\$90.5	\$78.6	\$66.8	\$54.9	\$43.1	\$31.2
	130	17.4	\$105.0	\$92.2	\$79.4	\$66.5	\$53.7	\$40.8	\$28.0
Current N Rate	140	18.0	\$106.8	\$93.0	\$79.2	\$65.3	\$51.5	\$37.7	\$23.8
	150	18.6	\$107.7	\$92.9	\$78.1	\$63.2	\$48.4	\$33.6	\$18.8
	160	19.0	\$107.7	\$91.9	\$76.1	\$60.3	\$44.4	\$28.6	\$12.8
	170	19.3	\$106.8	\$90.0	\$73.2	\$56.4	\$39.6	\$22.8	\$6.0
	180	19.6	\$104.9	\$87.2	\$69.4	\$51.6	\$33.8	\$16.0	(\$1.8)
*Yield responses are averages from 34-site years									
**Net Return = canola price x vield increase) - (N price x N rate)									
Net return in blue represents maximum ± \$0.50 for the Canola:N Price Ratio range in this table and in Orange									
Barley (Moist) Fertilizer / Barley	(Dry) Fertilize	er Barley (Arid)	Fertilizer 🏒	Canola Fer	rtilizer Ca	nola (hyb	rid) Fertilize	er / 🛛 🖌	

https://www.gov.mb.ca/agriculture/crops/soil-fertility/nitrogen-rate-calculator.htm

Manitoba

Fertilizer & crop price scenarios for MB N Rate Calculator for wheat, based on 147 Westco field trials and 30 lb residual N soil test

					Net
Spring Wheat Scenarios	Urea	Wheat	Optimum	Crop	Return
	Price	Price	N Rate	Yield	to N
	\$/Tonne	\$/bu	lb N/ac	bu/ac	\$/ac
Jan 2022 fertilizer & crop prices - moist	\$ 1,300	\$ 13.50	100	63	\$ 209
Jan 2024 fertilizer & crop prices - moist	\$ 800	\$ 9.50	110	64	\$ 159
Jan 2024 fertilizer & low crop prices - moist	\$ 800	\$ 7.50	100	63	\$ 109
Jan 2024 fertilizer & crop prices - dry	\$ 800	\$ 9.50	90	45	\$ 78

Optimum rates of N are relatively stable across a range of fertilizer and crop prices ... and moisture supplies

The MB N Rate Calculator uses "quadratic" equations to describe response to soil plus fertilizer N, based on data from Westco's field trials in MB and Eastern SK

Moist environment (25 sites), Y = 24.75+ $0.4902x - 0.0015x^2$ R² = 0.9927 Dry environment (67 sites), Y = 14.22 + $0.4159x - 0.0013x^2$ R² = 0.9436 Arid environment (55 sites), Y = 14.22+ $0.5464x - 0.0038x^2$ R² = 0.8175

The choice of N response curve makes a huge difference to the estimate for optimum economic N rate and quadratic equations often over-estimate the optimum rate of N ... e.g. corn for 1 site-year in Iowa

DOI: 10.1002/ael2.20075

RESEARCH LETTER

these two according to their

How can we estimate optimum fertilizer rates with accuracy and precision? "We fitted the LP and QP models and chose the best-fitting of

Fernando E. Miguez¹

Hanna Poffenbarger² 💿

¹Dep. of Agronomy, Iowa State Univ., 716 Farm House Ln., Ames, IA 50011, USA

²Dep. of Plant and Soil Sciences, Univ. of Kentucky, 1100 Nicholasville Rd., Lexington, KY 40506, USA

Correspondence

Fernando E. Miguez, Dep. of Agronomy, Iowa State Univ., 716 Farm House Ln., Ames, IA 50011, USA. Email: femiguez@iastate.edu

Assigned to Associate Editor Matthew Ruark.

Akaike Information Criterion (AIC) values."

Abstract

For decades, agronomists have invested time and resources to identify the optimum nitrogen (N) rates for cereal crops. The most common method for estimating the agronomic optimum N rate (AONR) is to design a field experiment with several N

Finally, we propose that using either the best-fitting model or a weighted model is preferable to always choosing either the linear-plateau (negative bias) or quadratic-plateau (positive bias) models

will demand an increase in the number of N rates and replications. Finally, we propose that using either the best-fitting model or a weighted model is preferable to always choosing either the linear-plateau (negative bias) or quadratic-plateau (positive bias) models.

Nitrogen Management for High-Yielding Wheat in Manitoba

University Manitoba

Prosper spring wheat plots at Brunkild 2017

Most Accurate N Response Curves for "Hind-Casting" High-Yielding Wheat in Manitoba (Mangin et al. 2018)*

	\\/hoot	Statistical Model for N Response Curve					
Site-Year	Veriety	Linear -	Linear -	Quadratic -	Quadratic	Linear	
	variety	Plateau	Linear	Plateau			
Brunkild 2016	Brandon	Best		n I			
	Prosper		Best				
Cormon 2016	Brandon					Best	
Carman 2016	Prosper					Best	
Brunkild 2017	Brandon			-	Best		
	Prosper		Best				
Carman 2017	Brandon					Best	
	Prosper		Best				
Melita 2016	Brandon				Best		
	Prosper	Best					
Carberry 2016	Brandon					Best	
	Prosper					Best	
Melita 2017	Brandon					Best	
	Prosper					Best	
Grosse Isle 2017	Brandon	Best					
	Prosper				Best		

*Accuracy determined using Akaike Information Criterion (AIC) values for each model and site-year

Optimum N Rate for Brandon CWRS Wheat in Manitoba (Determined using top-ranked means group, Mangin & Flaten 2018)

Site-year	Economic Optimum Fert. N Rate*	Yield at Optimum Fert. N Rate	Total Nitrogen Supply per bushel	Grain Protein at Optimum Fert. N Rate
	lbs. N/ac	bu/ac	lbs. N/bu	%
Carman 2016	170 Hai	I Damaged	3.3	<u> </u>
Brunkild 2016	170	73	2.9	13.0
Carman 2017	170	99	2.2	14.8
Brunkild 2017	170	115	1.9	12.5
Melita 2016	125	66	2.6	14.7
Carberry 2016	110	98	2.0	13.7
Melita 2017	155	77	2.1	12.1
Grosse Isle 2017	140	75	2.7	13.6

Optimum soil test N + Fertilizer N = 2.25 lb N/bu @ 13.5% protein

http://www.mbwheatandbarley.ca/wp-content/uploads/2018/05/Mangin-Flaten-N-mgmt-for-HY-wheat-projectrevised-technical-report-2018-03-31.pdf

*Wheat prices from Jan 5, 2018, Nitrogen prices based on 5-years AVG urea price (\$0.43/lbs N)

Low protein is a useful indicator of N deficiency in wheat*

"The yield curve in wheat flattens out at a certain point. And that point is 13.5 percent. So there are areas in that field with 11.5 percent (protein) that still had yield potential, that might have reached 100 bu. per acre."

Rick Rutherford,
Innovation Farms,
Grosse Isle, MB

*e.g., see Jay Goos et al. Agronomy Journal (1982) ... based on 1977-1980 research in Colorado

Farmer experiments with protein monitor Western Producer - August 17, 2023 By Robert Arnason Reading Time: 3 minutes Published: August 17, 2023 Crops, Machinery, News

Rick Rutherford could be one of the first producers in Manitoba to experiment with a protein monitor in his combine. | File photo

Nitrogen Fertilization for Corn 2016-2017 Manitoba Agriculture Field Trials

John Heard, Manitoba Agriculture

Most economic rate of N @ \$4/bu corn and \$0.40/lb N

Most economic rate of N @ \$4/bu corn and \$0.40/lb N

Most economic rate of N @ \$4/bu corn and \$0.40/lb N

Nitrogen Fertilization for Modern Corn Hybrids 2018-2019 University of Manitoba Field Trials

Lanny Gardiner

Dept. of Soil Science, University of Manitoba

Economic Optimum Total N Supply* Summary

Method of Analysis	Average for site- years yielding less than 130 bu/ac	Average for site- years yielding more than 130 bu/ac
Numerical Maximum Return	167 lb N for 111 bu = 1.5 lb N/bu	185 lb N for 150 bu = 1.2 lb N/bu
Individual Quadratic Responses for Each Site-Year	188 lb N for 107 bu = 1.8 lb N/bu	189 lb N for 147 bu = 1.3 lb N/bu
One Quadratic Response for Each Yield Group	241 lb N for 115 bu = 2.1 lb N/bu	213 lb N for 148 bu = 1.4 lb N/bu
Estimated N Mineraliza	ition 30 lb N/ac	63 lb N/ac

*Total N Supply = Pre-Plant Soil Test Nitrate-N + Fertilizer N

Factors affecting crop response to fertilizer:

- i) crop's nutrient <u>requirements</u>, considering crop species & variety or hybrid, environment, yield potential, etc.
- ii) crop's ability to use soil's nutrient supply
 - soil's power to supply nutrients over growing season
 - chemical extractants or ion exchange membranes provide rapid analysis that imitates plant extraction of nutrients ... e.g., soil test nitrate-N
 - net release of additional nutrients during the growing season ... e.g., N mineralization from more decomposition than formation of soil org. matter

Variation in Field-Estimated Measurements of N Mineralization in Wheat and Corn N Field Trials in Manitoba

Effect of Site and Year on Estimated N		Effect of Site and Year on Estimated N			
Mineralization During the Spring Wheat		Mineralization During the Grain Corn			
Growing Season (Mangin & Flaten 2018)		Growing Season (Gardiner & Flaten 2020)			
	Estimated N		Estimated N		
	mineralization	Site-Year	mineralization		
Site-Year	(lb N/ac)		(lb N/ac)		
Carman 2016	67	CarmanWest 2018	89		
	25	Graysville 2018	58		
Brunklid 2016	35	Macgregor 2018	51		
Melita 2016	47	Rosebank 2018	92		
Carberry 2016	130	Stephenfield 2018	12		
Carman 2017	73	CarmanNorth 2019	47		
Brunkild 2017	45	CarmanSouth 2019	95		
Melita 2017	85	Clearwater 2019	43		
Grosse Isle 2017	46	Elgin 2019	59		
Mean	66	Graysville 2019	67		
Range	35-130	Morris 2019	17		
		Rosebank 2019	22		
		StClaude 2019	32		
		Mean	53		
		Range	12-95		

Soil sample incubation tests* did <u>not</u> predict N mineralization in the field ... due to differences in environmental conditions and management

Incubation Test for Estimating N Mineralization for High Yielding Spring Wheat <u>in the Field</u> for 8 Site-Years

Gardiner and Flaten 2020

* Field moist soil incubated at room temperature for 4 weeks after sampling, compared to soil dried & analyzed quickly after sampling

% Soil Organic Matter did <u>not</u> predict N mineralization in the field ... due to differences in organic matter composition, environmental conditions and agronomic management

% Soil Organic Matter for Estimating N Mineralization for High Yielding Spring Wheat in the Field for 8 Site-Years

Mangin et al. 2018

Gardiner and Flaten 2020

Sodium bicarbonate test did <u>not</u> predict N mineralization in the field ... due to differences in environmental conditions and management

NaHCO₃ Extraction Absorbance Soil Test (205 nm) for Estimating N Mineralization for High Yielding Spring Wheat in the Field for 8 Site-Years

NaHCO₃ Absorbance Soil Test (205 nm) for Estimating N Mineralization for Corn <u>in the Field</u> for 13 Site-Years

Gardiner and Flaten 2020

N fertility is often variable within fields, eg. due to landscape

Crop: Canola Last Crop: Barley-Malt

Yield Goal (bu/ac) 43.6

Machine Controller: X30 Prescription File: D1MervinCanola2022

			YieldGoal	Canola	MAP	Urea	Crystal Green		
Zor	ne	Acres	(bu/ac)	Layer 1	Layer 2	Layer 3	Layer 4 Layer 5	Actual Fertilit	y Rates
1		10.5	30	5.3	30	160	60	82 - 39 - 0 - 0	+ 3Mg
2		18.2	35	5.1	30	170	60	86 - 39 - 0 - 0	+ 3Mg
3		25.6	40	4.9	35	180	50	91 - 38 - 0 - 0	+ 3Mg
4		27.8	45	4.8	35	180	50	91 - 38 - 0 - 0	+ 3Mg
5		28.3	50	4.8	35	180	50	91 - 38 - 0 - 0	+ 3Mg
6		24.9	50	4.8	35	190	50	95 - 38 - 0 - 0	+ 3Mg
7		15.6	50	4.8	30	190	40	93 - 32 - 0 - 0	+ 2Mg
8		7	40	5.1	20	170	30	82 - 22 - 0 - 0	+ 2Mg
9		2.5	30	5.3	15	100	15	49 - 14 - 0 - 0	+ 1Mg
10		1.2	15	4	15	50	15	26 - 14 - 0 - 0	+ 1Mg
		Average:	43.6	4.9	32.5	177.4	49.1	89 - 36 - 0 - 0	

Notes: Low P in zones 1-6. Low chloride in zones 1-4. Low zinc in zones 1-2. Light salinity in zones 7-8, very high in zones 9-10.

L																
	Field Area	% Field	N(20)	N(21)	OM %	pН	Р	К	S	CI	Zn	Cu	В	Texture	Salinity	CMPT Date
Γ		10	04	05	10	7.0	0 (Olean)	0.40	07		0.4	0.7			0.46	May 05, 2021
	Field	Aroa	0/_	Fia	Ы					N/2	201		N/2	11	0.45	May 05, 2021
	I ICIU	Alea	/0	1 10	iu –					11(2	.0)		11(2		0.70	May 05, 2021
		1 0		40						0	4		- 01	-	1.36	May 05, 2021
L	zone	1,2		18						- 24	4		3:		4.80	May 05, 2021
				_							_					
Cr	zone	3.4		33						2	1		- 33	3		
	20110	•,•								_	•			-		
	7000	56		22						29	R		/11			
	20116	5,0		00						2			-			
		70		4 /						- -	7		0			
	Zone	·/,o		14							(20			Jniversit
		A A A		•						_	_					Manitoh
	zone	9.10		2							5		6	3	>> ≤	
		-,		_						-	-					

Soil test N variability due to <u>historical management</u> within a nearly level field of clay soil near Winnipeg

Soil test N variability due to <u>historical management</u> within a nearly level field of clay soil near Winnipeg

The parts of the field on each side of the stream were sampled separately

Field 1a - 277 ac

Where the combine's yield monitor seemed to go "off the scale"

Field

31 ac

1b

Soil test N variability due to <u>historical management</u> within a nearly level field of clay soil near Winnipeg

After harvest, the parts of the field on each side of the stream were sampled separately

Field 1a – 41 lb soil test N/acre

150 lb more nitrate-N/ac / in the section of the field with the <u>highest</u> yield

Field 1b

190

Variable N supply in field due to historical applications of pig manure >20 years ago at the Jochum farm near St. Francois Xavier, MB

Fiona @fionajochum

Seeing some interesting things on our @FieldViewCanada yield maps. Not related to variety or applications. Ex: the S quarter had we will we sold out in the 90's! #OurFieldViewFarm #KnowMoreGrowMore @Bayer4CropsCA ...now to find some more &

5:06 PM · Sep 29, 2021 · Twitter for iPhone

3 Retweets 17 Likes

Effect of 8 years of annual applications of fertilizer* and manure** on <u>estimated N mineralization</u> measured at the National Centre for Livestock and the Environment long term field trials near Winnipeg***

Historic Fertility Treatments	Wheat 2016	Canola 2017 Ib N/acre	Average
Control - no fertilizer or manure since 2007	22	32	27
Discontinued synthetic fertilizer in 2016	68	65	67
Discontinued liquid pig manure in 2016	103	66	84
Discontinued solid pig manure in 2016	99	85	92
Discontinued solid dairy manure in 2016	141	93	117
* Fertilizer applied acc. to rec. from MB Soil Ferti ** N-based rates using MB's standard formulas f *** Annual crop rotation	ility Guide or manure	N availabilit	ty
	an ado	ditional	
4	10 to 90	lb N/acr	e
per v	ear com	pared to	olong
	term	control	
			University

Adapted from Fraser and Flaten 2018 Final Report to MLMMI

Factors affecting crop response to fertilizer:

- i) crop's nutrient <u>requirements</u>, considering crop species & variety or hybrid, environment, yield potential, etc.
- ii) crop's ability to use soil's nutrient supply
 - soil's power to supply nutrients over growing season
 - chemical extractants or ion exchange membranes provide rapid analysis that imitates plant extraction of nutrients, e.g., soil test nitrate-N
 - net release of additional nutrients during the growing season ... e.g., N mineralization from more decomposition than formation of soil org. matter
 - crop's ability to extract nutrients from soil ... which varies with species and cultivar (especially for P & K)

iii) fertilizer use <u>efficiency</u> for different sources, timings & placements

Within the same fields, fall-banded urea on "low" landscape positions was less efficient than spring-banded urea ... especially if N was applied early in fall

Research in the 1970s showed that barley yield increase from fall vs spring broadcast/incorporated N in Manitoba was 20% lower in the Red River Valley than in Western MB

Research in the 1970s showed that barley yield increase from fall vs spring broadcast/incorporated N in Manitoba was 20% lower in the Red River Valley than in Western MB .. but fall was much poorer than spring broadcast in both regions

Tools to Deal with Variable Crop Response to N

- Use in-field check & N-rich strips or plots to monitor N responses
- In situations where mid-season rainfall is likely, consider in-season evaluation of crop yield potential and N status to determine if midseason N applications are likely to be beneficial
- Use annual fall residual soil nitrate tests to provide:
 - a <u>decent</u> forecast of typical crop responses to fertilizer N ... and to keep from getting too far off track with N applications for the next crop (e.g., similar to a financial budget or plan)
 - an <u>excellent</u> update/audit on your N "budgets" for individual fields and management zones (e.g., similar to a bank account statement)

Dealing with variability in crop response to P fertilizer and P fertility

P fertilizer responses and critical soil test P thresholds under field conditions are not precise

- Alberta data show a critical level of 20-25 ppm STP for <u>average</u> of 10% increase in yield
- Above this level, only maintenance (crop removal) application would be required

Ross McKenzie, Alberta Agric.

P fertilizer responses and critical soil test P thresholds under field conditions are not precise

- Alberta data show a critical level of 20-25 ppm STP for <u>average</u> of 10% increase in yield
- Above this level, only maintenance (crop removal) application would be required
- But the variability was large, even for the same crop

Ross McKenzie, Alberta Agric.

P fertilizer responses and critical soil test P thresholds under field conditions are not precise

 Given the large variability, a probability approach may be more realistic than a "response curve" ... ie. soil test P rated at low, medium, or high ... based upon high, medium, and low probability of a response to P

Ross McKenzie, Alberta Agric.

Year to year differences in moisture and temperature conditions result in highly variable response to P ... even in the same soil

Guide to Farm Practice in Saskatchewan 1987

Yield response to P is highly variable from year to year ... and from one crop phase to another ... in the same soil

Adapted from Campbell, C. A., Zentner, R. P., Selles, F., Jefferson, P. G., McConkey, B. G., Lemke R. and Blomert, B. J. 2005. Long-term effect of cropping system and nitrogen and phosphorus fertilizer on production and nitrogen economy of grain crops in a Brown Chernozem. Can. J. Plant Sci. 85: 81–93.

Probability of cereal crop response to fertilizer P drops below 50% at Olsen soil test P levels greater than ~ 15 ppm

Manitoba P R Cerea	esponse Pro Is and Hay C	babilities Trops	s for			
Available P (ppm Olsen)	Number of Experiments	% Respon to Fertiliz	nding zer P			
0-5 V. Low	15	100		Saskatche	ewan P Response	Probabilities
5-12 Low-Med	50	62	Soil	Test P	Recommended	Probability of
12-18 Med-High	16	56	0-6	6 inch	Fertilizer Rate	Yield Response
>18 High-VH	14	29	(ppm) (Ib/A)	$(\text{Ib P}_2\text{O}_5/\text{A})$	(%)
Overall	95	63	0-5	0-10	35-40	>75
	He	dlin U of M	5-10	11-20	30-35	50-75
			10-15	5 21-30	25-30	50
			15-30	31-60	15-20	25-50
			>30	>60	0-15	less than 25

P Response Probabilities for Westco Studies with Spring Wheat in AB, SK and MB 1988-1995

P response also varies with crop species – e.g. soybeans are more efficient than other crops for feeding on <u>soil</u> P

P response probabilities were very low for U of MB studies with soybeans in Manitoba (2013-2015)

https://mspace.lib.umanitoba.ca/handle/1993/31688

P Response Probabilities for Westco Studies with Spring Wheat in AB, SK and MB 1988-1995

P response to side-banded starter P in corn can be large (Magda Rogalsky 2017, U of MB M.Sc. Thesis)

2 x Early Season Biomass

Up to 1 Week
Accelerated Maturity

2-3% Grain moisture
 10% Grain Yield

https://mspace.lib.umanitoba.ca/handle/1993/32462

... but even though starter P is beneficial for corn, overall response varies among hybrids (Tran, U of M M.Sc. thesis)

Corn hybrid seedlings with greater root length are less likely to respond to 10-34-0 starter fertilizer

Dickson Tran. MSc Thesis, Univ. of Manitoba

P fertility is often variable within fields

Crop: Canola Last Crop: Barley-Malt Yield Goal (bu/ac) 43.6

YieldGoal Canola MAP

Machine Controller: X30 Prescription File: D1MervinCanola2022

						Green	
Zone	Acres	(bu/ac)	Layer 1	Layer 2	Layer 3	Layer 4 Layer	r 5 Actual Fertility Rates
1	10.5	30	5.3	30	160	60	82 - 39 - 0 - 0 + 3Mg
2	18.2	35	5.1	30	170	60	86 - 39 - 0 - 0 + 3Mg
3	25.6	40	4.9	35	180	50	91 - 38 - 0 - 0 + 3Mg
4	27.8	45	4.8	35	180	50	91 - 38 - 0 - 0 + 3Mg
5	28.3	50	4.8	35	180	50	91 - 38 - 0 - 0 + 3Mg
6	24.9	50	4.8	35	190	50	95 - 38 - 0 - 0 + 3Mg
7	15.6	50	4.8	30	190	40	93 - 32 - 0 - 0 + 2Mg
8	7	40	5.1	20	170	30	82 - 22 - 0 - 0 + 2Mg
9	2.5	30	5.3	15	100	15	49 - 14 - 0 - 0 + 1Mg
10	1.2	15	4	15	50	15	<u>26 - 14 - 0 - 0 + 1Mg</u>
	Average	: 43.6	4.9	32.5	177.4	49.1	89 - 36 - 0 - 0

Urea Crystal

of Manifoba

Notes: Low P in zones 1-6. Low chloride in zones 1-4. Low zinc in zones 1-2. Light salinity in zones 7-8, very high in zones 9-10.

	Field Area	% Field	N(:	20)	N(21)	OM %	pН	Р	Field	Area	a	% Field	Р
	zone 1,2 zone 3.4	18 33	2	24 21	35 33	4.0 4.3	7.9 7.8	8 (Olsen) 11 (Olsen)	7000	1 2	High	area 19	Q (Oleen)
	zone 5,6	33	2	8	41	5.5	7.7	12 (Olsen)	20116	; 1,2	підп	alea Io	o (Olsen)
	zone 7,8 zone 9,10	14 2	1 7	7 '5	20 63	6.2 5.4	7.8 8.0	27 (Olsen) 45 (Olsen)	zone	3,4		33	11 (Olsen)
_		C14/47	[mon				Г	Juriah	zone	5,6		33	12 (Olsen)
C	горего	JVA	пар	pro	Jvia		уу г	Jwign	zone	7,8		14	27 (Olsen)
									zone	9,10	Low	area 2	45 (Olsen)
													University

Tools to Deal with Variable Crop Response to P

Soil test for P every year to estimate needs & monitor trends ... then use one of two P management strategies:

Short-Term Sufficiency

- Choose a rate based on <u>typical</u> economic yield response <u>in the</u> year of application only, eg. typical Provincial rec'ns that seedplace a low rate of P ... often less than crop removal ... so P fertility declines over the long term
- Suitable for short-term land tenure and when P costs are high relative to crop prices

Long-Term Sustainability

- Long-term economics considers residual P value for P fertility
- Aim P applications to reach and maintain soil test P target range (e.g., 10-20 ppm Olsen P):
 - Build on low-P soils
 - Deplete on high-P soils
- Suitable for long-term land tenure and when P costs are low relative to crop prices

Dealing with variability in crop response to K fertilizer and K fertility

K response varies with crop species ... e.g., no evidence of soybean yield response to K fertilization at STK < 100 ppm

K Fertilization for Soybeans vs. Barley Megan Bourns, M.Sc. Project

- Barley/soybean K response study conducted in 2018 at same sites as soybean fertilization study
- K fertilization increased barley yields by 20%, but no response in soybean at 1 the same sites
- Current recommend'ns, based on soil test K worked well for barley, but not for soybean

K fertility is often patchy within fields

Crop: Canola Last Crop: Barley-Malt Yield Goal (bu/ac) 43.6 Machine Controller: X30 Prescription File: D1MervinCanola2022

		YieldGoal	Canola	MAP	Urea	Green					
Zone	Acres	(bu/ac)	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5		Actual	Fertility Rates	
1	10.5	30	5.3	30	160	60		82 - 39	- 0 - 0	0 + 3Mg	
2	18.2	35	5.1	30	170	60		86 - 39	- 0 - 0	0 + 3Mg	
3	25.6	40	4.9	35	180	50		91 - 38	- 0 - 0	0 + 3Mg	
4	27.8	45	4.8	35	180	50		91 - 38	- 0 - 0	0 + 3Mg	
5	28.3	50	4.8	35	180	50		91 - 38	- 0 - 0	0 + 3Mg	
6	24.9	50	4.8	35	190	50		95 - 38	- 0 - 0	0 + 3Mg	
7	15.6	50	4.8	30	190	40		93 - 32	- 0 - 0	0 + 2Mg	
8	7	40	5.1	20	170	30		82 - 22	- 0 - 0	0 + 2Mg	
9	2.5	30	5.3	15	100	15		49 - 14	- 0 - 0	0 + 1Mg	
10	1.2	15	4	15	50	15		26 - 14	- 0 - 0	0 + 1Mg	
	Average:	43.6	4.9	32.5	177.4	49.1		89 - 36	- 0 - 0	0	
Note	s: Low	P in zone	s 1 - 6. L	ow chl	oride ir	zones	1 - 4. Lo	ow zinc i	in zon	Field Area	a % Field
Note	s: Low	P in zone	s 1-6. L	ow chlo	oride ir	zones	1-4. Lo	ow zinc i	in zon	Field Area	a % Field
Note Fie	d Area	P in zone % Field 18	s 1-6. L	ow chlo	oride ir <u>N(21)</u> 35	OM %	1-4. Lo	P 8 (Olsen)	in zon K	Field Area zone 1,2	a % Field High area18
Note Fie Zo	d Area ne 1,2 ne 3,4	P in zone <u>% Field</u> 18 33	s 1-6. L	.ow chlo <u>N(20)</u> 24 21	oride ir <u>N(21)</u> 35 33	OM % 4.0 4.3	1-4. Lo рн 7.9 7.8	P 8 (Olsen) 11 (Olsen)	in zon K 249 253	Field Area zone 1,2	a % Field High area 18
Note Fie Zo Zo Zo	d Area ne 1,2 ne 3,4 ne 5,6 ne 7.8	P in zone <u>% Field</u> 18 33 33 14	s 1-6. L	N(20) 24 21 28 17	N(21) N(21) 35 33 41 20	OM % 4.0 4.3 5.5 6.2	pH 7.9 7.8 7.7 7.8	P 8 (Olsen) 11 (Olsen) 12 (Olsen) 27 (Olsen)	K 249 253 335 400	Field Area zone 1,2 zone 3,4	a % Field High area18 33
Fie Zo Zo Zo Zo	d Area ne 1,2 ne 3,4 ne 5,6 ne 7,8 ne 9,10	P in zone <u>% Field</u> 18 33 33 14 2	s 1-6. L	N(20) 24 21 28 17 75	N(21) N(21) 35 33 41 20 63	OM % 4.0 4.3 5.5 6.2 5.4	PH 7.9 7.8 7.7 8.0	P 8 (Olsen) 11 (Olsen) 12 (Olsen) 27 (Olsen) 15 (Olsen)	K 249 253 335 400 304	Field Area zone 1,2 zone 3,4	a % Field High area 18 33
Fie Zo Zo Zo Zo	d Area ne 1,2 ne 3,4 ne 5,6 ne 7,8 ne 9,10	P in zone % Field 18 33 33 14 2	s 1-6. L	N(20) 24 21 28 17 75	N(21) 35 33 41 20 63	OM % 4.0 4.3 5.5 6.2 5.4	рн 7.9 7.8 7.7 7.8 8.0	P 8 (Olsen) 11 (Olsen) 12 (Olsen) 27 (Olsen) 45 (Olsen)	K 249 253 335 400 304	Field Area zone 1,2 zone 3,4 zone 5,6	a % Field High area 18 33 33
Fie Zo Zo Zo Zo	d Area ne 1,2 ne 3,4 ne 5,6 ne 7,8 ne 9,10	P in zone % Field 18 33 33 14 2 SWA	s 1-6. L	N(20) 24 21 28 17 75	N(21) 35 33 41 20 63	OM % 4.0 4.3 5.5 6.2 5.4	1-4. Lo	P 8 (Olsen) 11 (Olsen) 12 (Olsen) 27 (Olsen) 45 (Olsen) wigh	K 249 253 335 400 304	Field Area zone 1,2 zone 3,4 zone 5,6 zone 7,8	a % Field High area 18 33 33 14
Note Fie ZO ZO ZO ZO ZO ZO	d Area he 1,2 he 3,4 he 5,6 he 7,8 he 9,10 DPro	P in zone % Field 18 33 33 14 2 SWA	s 1-6. L	N(20) 24 21 28 17 75	N(21) 35 33 41 20 63	OM % 4.0 4.3 5.5 6.2 5.4	1-4. Lo <u>рн</u> 7.9 7.8 7.7 8.0 2 5 у D	P 8 (Olsen) 11 (Olsen) 12 (Olsen) 27 (Olsen) 55 (Olsen)	k 249 253 335 400 304	Field Area zone 1,2 zone 3,4 zone 5,6 zone 7,8 zone 9,10	a % Field High area 18 33 33 14 Low area 2

κ

249

253

335

400

K <u>deficiency</u> is often patchy within fields

K deficiency is often patchy within fields

K deficiency is often patchy within fields

Wheat growing over previous year's swaths Wheat between previous year's swaths

Spring wheat - Topham
K retention & release in soil varies with types of soil minerals, affecting interpretation of soil test K e.g. John Breker's MSc research at NDSU

exchangeable adsorption of hydrated ions

non-exchangeable adsorption of dehydrated ions

Tools to Deal with Variable Crop Response to K

- Use in-field K-check & K-rich strips to monitor K responses across fields
- Use annual fall soil K tests to track trends in soil test K, especially on sandy soils

S Dealing with variability in crop response to S fertilizer and S fertility

S fertility is often patchy within fields

Crop: Canola Machine Controller: X30 Prescription File: D1MervinCanola2022 Last Crop: Barley-Malt Yield Goal (bu/ac) 43.6 YieldGoal Canola MAP Urea Crystal Green Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 **Actual Fertility Rates** Zone Acres (bu/ac) 82 - 39 - 0 - 0 1 10.5 30 5.3 30 160 60 + 3Ma 2 18.2 35 5.1 30 170 60 86 - 39 - 0 - 0 + 3Mg 3 25.6 40 4.9 35 180 50 91 - 38 - 0 - 0 + 3Ma 27.8 4.8 180 91 - 38 - 0 - 04 45 35 50 + 3Mg 5 28.3 50 4.8 35 180 50 91 - 38 - 0 - 0 + 3Mg 6 24.9 50 4.8 35 190 50 95 - 38 - 0 - 0 + 3Mg 7 15.6 50 4.8 30 190 40 93 - 32 - 0 - 0 + 2Ma 8 7 5.1 170 82 - 22 - 0 - 0 + 2Mg 40 20 30 9 2.5 30 5.3 100 15 49 - 14 - 0 - 0+ 1Ma 15 10 1.2 15 50 15 15 4 26 - 14 - 0 - 0 Field Area S 43.6 4.9 32.5 177.4 49.1 89 - 36 - 0 - 0 Average: zone 1,2 27 Notes: Low P in zones 1-6. Low chloride in zones 1-4. Low zinc in zones 1-2. zone 3,4 45 Field Area % Field N(20) N(21) OM % pН Ρ Κ S 8 (Olsen) 249 27 18 24 35 4.0 7.9 zone 1.2 33 zone 3.4 21 33 4.3 7.8 11 (Olsen) 253 45 zone 5,6 59 33 zone 5.6 28 41 5.5 7.7 12 (Olsen) 335 59 14 17 20 6.2 7.8 27 (Olsen) 400 160 zone 7.8 zone 9,10 2 75 63 5.4 8.0 45 (Olsen) 304 160 zone 7,8 160 CropPro SWAT map provided by Dwight Odelei zone 9,10 160 Saline areas might have 30,000 lbs S/acre University of Manita

Tools to Deal with Variable Crop Response to S

- Most of us have given up on relying soil testing for S recommendations and we simply recommend applying S across most fields for sensitive crops such as canola because of:
 - substantial, fine-scale variability in S fertility within fields
 - the potential for catastrophic yield loss associated with S deficiency
 - the relatively low cost of S fertilization

Summary

Crop response to fertilizer varies greatly across <u>space</u> and <u>time</u> because many factors affect crop response, e.g.

- i) crop's nutrient <u>requirements</u>, considering crop species & variety or hybrid, yield potential, soil, weather, etc.
- ii) crop's ability to use soil's nutrient supply
 - soil's power to supply nutrients over growing season
 - chemical extractants or ion exchange membranes provide rapid analysis that imitates plant extraction of nutrients
 - net release of additional nutrients during the growing season ... e.g., N mineralization from more decomposition than formation of soil org. matter
 - crop's ability to extract nutrients from soil ... which varies with species and cultivar, especially for P and K
- iii) fertilizer use <u>efficiency</u> for different sources, timings & placements

Summary, cont'd.

• Soil test every field/mgmt zone, every year, to:

- 1. <u>Predict</u> "typical" fertilizer and/or manure requirements for next year's crop, based on existing reserves in soil and long term "average" responses
- 2. <u>Evaluate/audit</u> your nutrient management planning for last year's crop ... e.g., look for signs of overfertilization or more N mineralization than expected and reduce rates for that field or zone accordingly for next year's crop
- 3. <u>Monitor</u> for long term upward or downward trends in soil fertility and soil health ... e.g., excess residual N or decreasing soil test P

Summary, cont'd.

- Use fertilizer curves or models with caution:
 - better suited to explore general concepts than for precisely predicting next year's crop response
 - for N, beware of "quadratic" response curves which often overestimate N requirements
 - for P and K, remember that variability in these responses is large ... so better suited to probabilities than response curves and be prepared for variable responses from year to year and crop to crop on the same field (e.g., 47 years of P trials in SK)
 - for S, we probably need to keep adding S on a whole field basis for sensitive crops such as canola
- Establish and monitor check and/or high fertility plots/strips ... and keep vigilant for "unusualities" in fields
 - in-season "two-eyed seeing", tissue testing, canopy reflectance
 - yield monitor and/or scaled grain cart at harvest
 - post-harvest soil testing

Summary, cont'd.

Annual soil testing is a <u>useful</u> fertilizer planning tool (like a financial budget) ... and an <u>excellent</u> fertilizer program auditing tool (like a bank statement)

Thank you for your attention!

