

Precision Soil Sampling Methods: Who Grids, Who Zones, Who Cares?

AGVISE CANADIAN SOIL SEMINARS
MARCH 12, 14, 2024
PORTAGE LA PRAIRIE & SASKATOON

GK Technology- Halstad, MN

Travis Yeik- Computer Programmer/Product Development

Clint Streeter – GIS Mapping Specialist

Paul Fuller – Sales, Drainage Consultant

Sarah Lovas – Agronomist, Sales, Support

Eric Lee – Data & Systems Administrator

Darin Johnson – Owner, Product Development/Computer Programmer

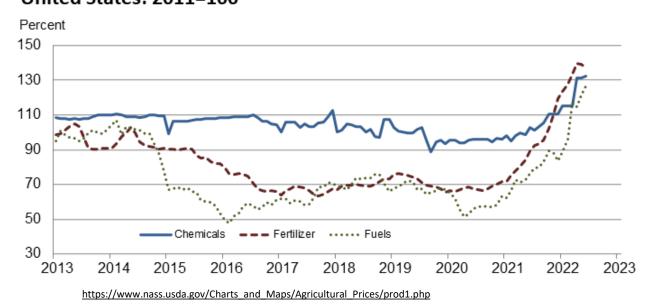
Cheryl Johnson- Owner, HR, Accounting

Ernie Johnson – Sales and Support

Kelly Sharpe - Owner, Agronomist, Sales, Support

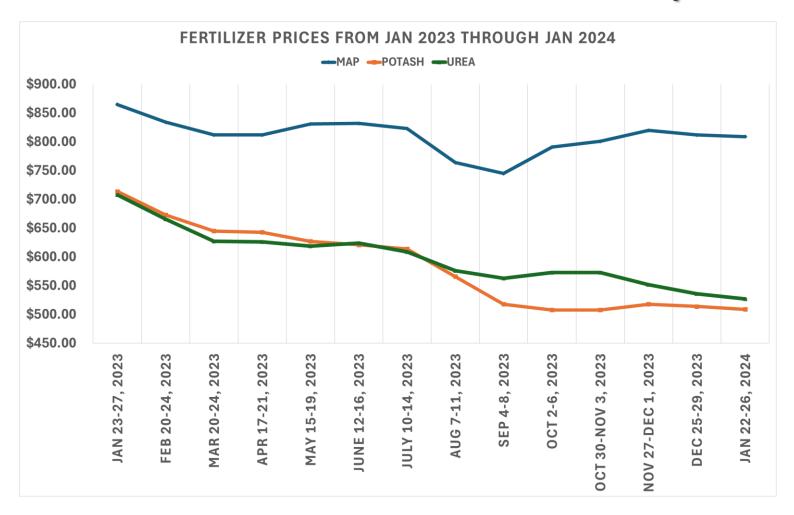
Jodi Boe- Agronomist, Sales, Support

www.gktechinc.com



Cost of Fertilizer Has Gone UP (2022)

Paid Indexes by Non-farm Origin and Month, Chemicals, Fertilizer, and Fuels – United States: 2011=100

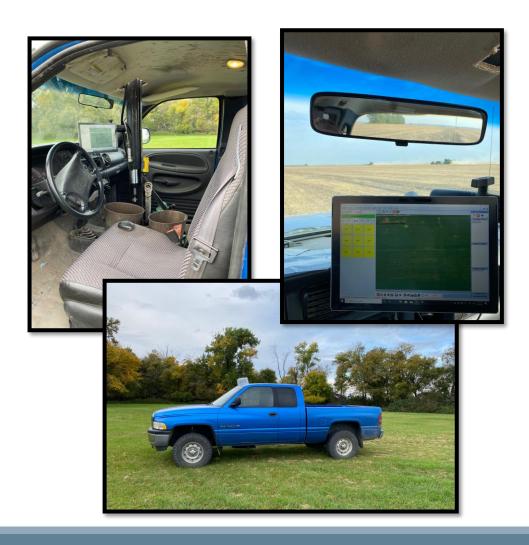

46-0-0 = \$600-650/ton

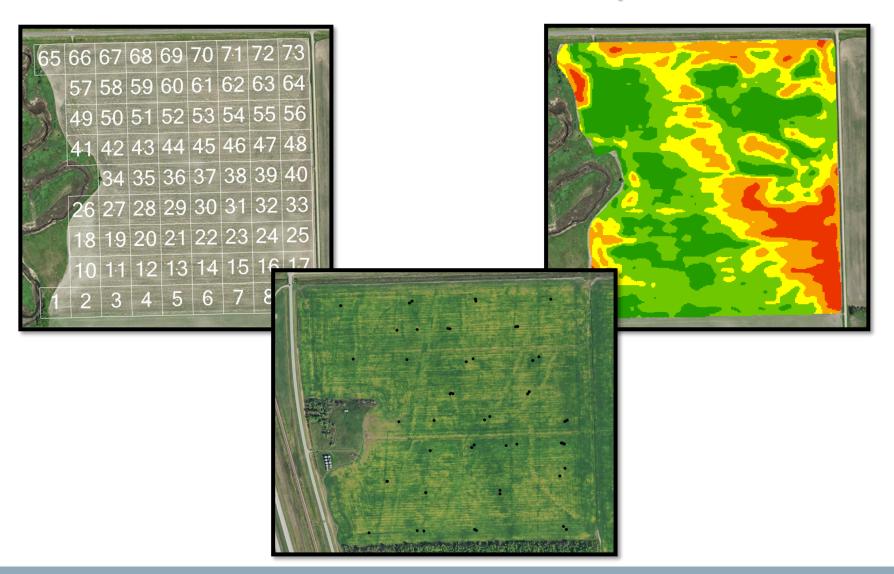
11-52-0 - \$900-1000/ton

0-0-60 - \$800/ton

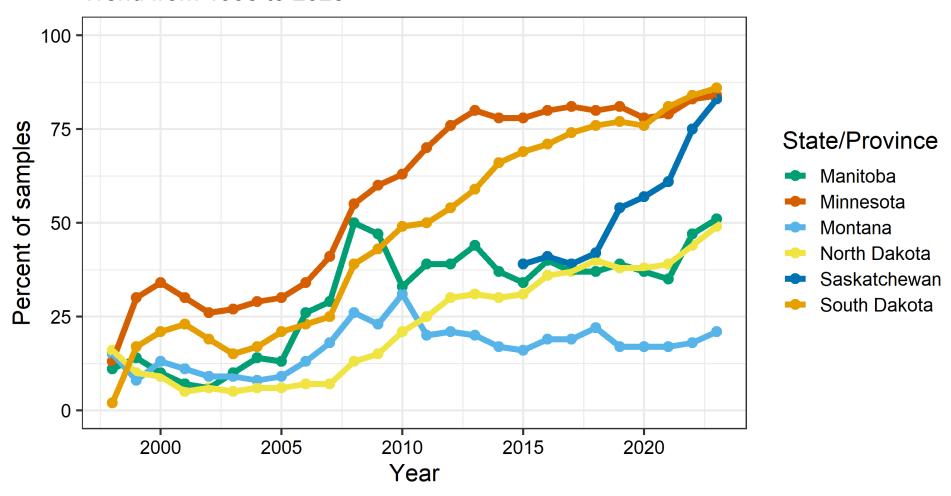
USDA - NASS 07/29/2022

Cost of Fertilizer is Volatile (2024)


https://www.dtnpf.com/agriculture/web/ag/crops/article/2024/02/07/fertilizer-prices-continue-move-week Progressive Farmer by DTN/ Author Russ Quinn

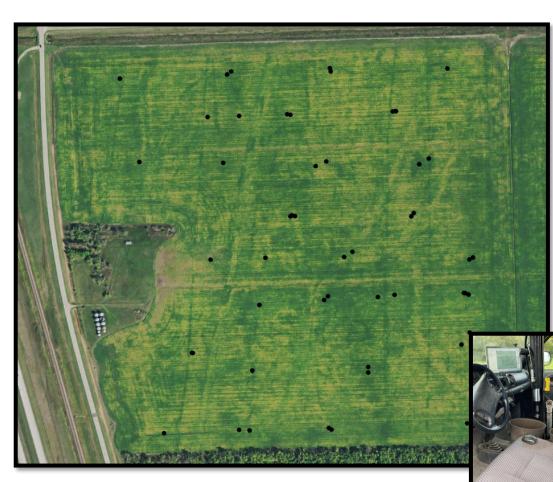

Acid Washed, High-Waist Jeans from the 1980's are back in style....

Soil Sampling is Cool Again!



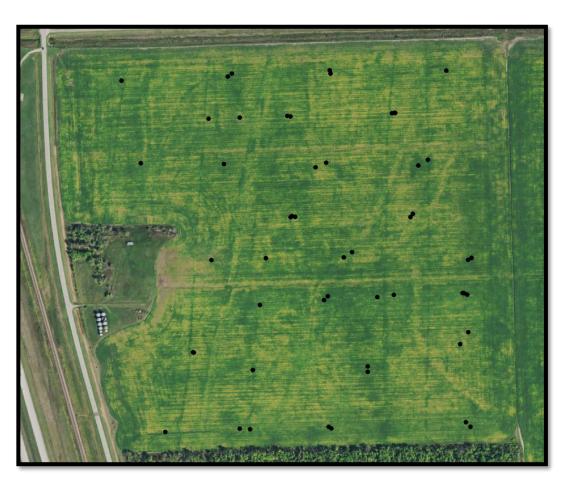
Grids or Zones or Composite?

Soil samples collected as a precision sample (grid or zone)


Trend from 1998 to 2023

Data not shown where n< 100 AGVISE Laboratories, Inc.

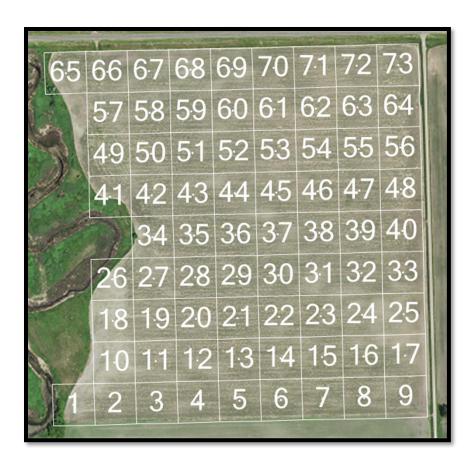
Composite Soil Sampling



Approximately 20-25 cores per quarter section in "average" spots

The Soil Sampling Explains the Average of the Field

Composite Soil Sampling



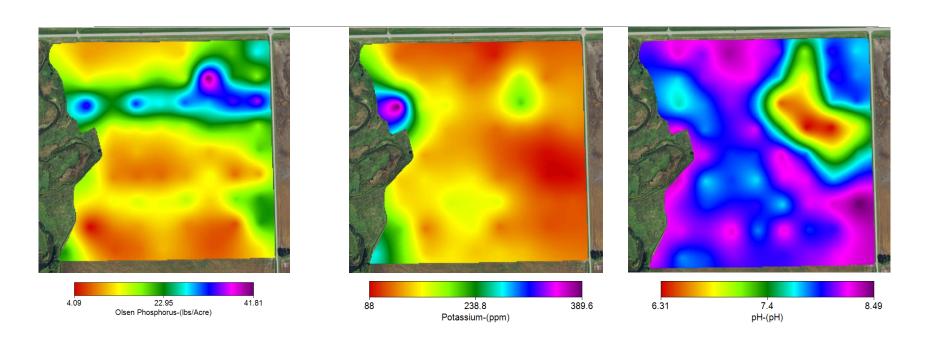
Nutrient I	n The Soil	In	terpi	etati	on
		VLow	Low	Med	
0-6" 6-24"	11 lb/acre 12 lb/acre	*****	***		
0-24''	23 lb/acre				
Nitrate					
Olsen Phosphorus	19 ppm	*****	*****	*****	*****
Potassium	499 ppm	*****	*****	*****	*****
0-24"	28 lb/acre	*****	****		
0-6" 6-24" Sulfur	10 lb/acre 72 lb/acre			*****	*****
Boron	1.0 ppm	*****	*****	***	
Zinc	0.67 ppm	*****	*****	*	
Iron	23.1 ppm	*****	*****	*****	*****
Manganese	2.4 ppm	*****	*****	*****	×
Copper	2.11 ppm	*****	*****	*****	**
Magnesium	1445 ppm	*****	*****	*****	*****
Calcium	5816 ppm	*****	*****	*****	*****
Sodium	27 ppm	****			
Drg.Matter	5.2 %	*****	*****	*****	***
Carbonate(CCE)	0.6 %	****			
0-6" 6-24" Sol. Salts	0.4 mmho/cm 0.43 mmho/cm				

General Comments: Soil texture is not estimated on high pH soils.

Grid Sampling

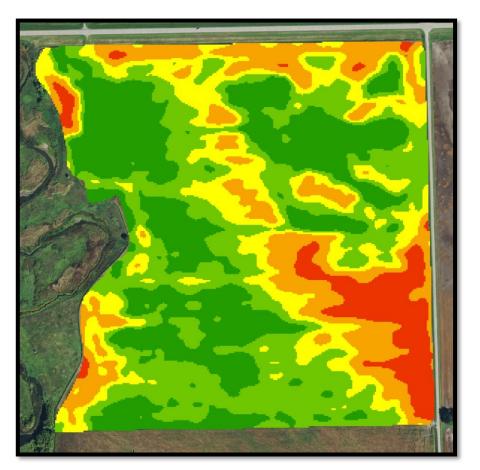
- Each Grid is its own "field"
- Approximately 10-15 cores per grid
- Can be 2 depths, but more frequently 0-6"
- •There has been some Grid Sampling in our area, but more frequently done in the Corn Belt States
- Works well for areas with man-made variability like manure or explaining variability not described well by zones

The Soil Sampling Explains the Variability of the Soil



Grid Sampling

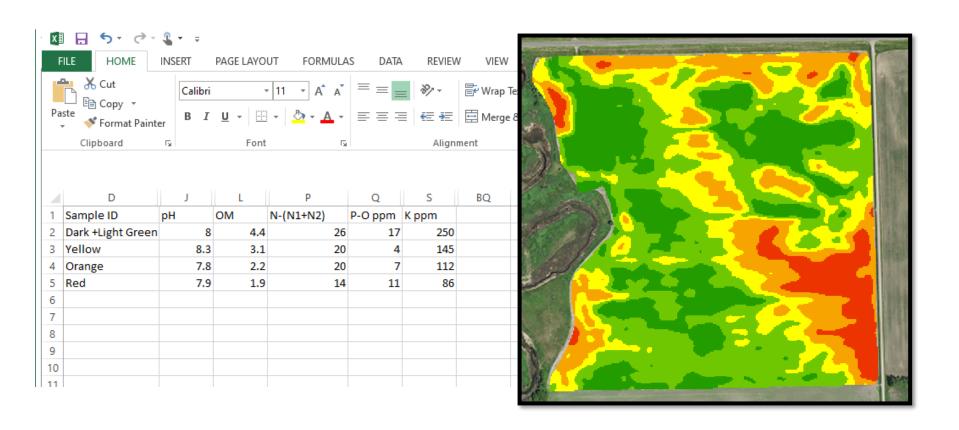
Α	B C	D E	-	G	H I	J N	L	M N	0	P	Q R	S	- 1	U	V	W	X	Y Z	AA		AC	AD	AE	AF	AG	AH	Al	AJ
ef No	GrowerID Fld ID(1s			Qtr(11)		pH BpH	OM	N1 lb N2 lb	N3 Ib		Oppm P-B1 ppm					62 lb		lt1 Salt2	CI-1 lb	CI-2 Ib	CI (Tot)	Cu ppm	B ppm				CEC meq C	
	1 Lovas Far Schoolh		1451		26	8.1	3.9			10	10	303	5507	1043	4		0.86	0.38		3	3	1.27	1.26	12.37	3.46	48	37.21	
	2 Lovas Far Schoolh		1451		26	7.9	4.8			12	5	189	4379	731	4		0.81	0.35		6	6	0.71			3.12	47		(
	3 Lovas Far Schoolh		1451		26	8	4.4			10	4	175	3687	777	8		1.43	0.24		5	5	0.72		9.5	5.22	33		(
	4 Lovas Far Schoolh		1451		26	8.1	4.5			14	6	160	4750	844	6		0.65	0.37		6	6	0.67	1.37	7.89	4.02	44		
	5 Lovas Far Schoolh		1451		26	8.1	4.6			17	5	139	4087	878	12		0.74	0.28		3	3	0.71			3.96	54		
	6 Lovas Far Schoolh		1451		26	8.1	4.2			13	5	150	4819	741	10		1.02	0.27		6	6	0.68	1.44		3.62	49		
	7 Lovas Far Schoolh		1451		26	8.1	4			13	5	142	4538	838	108		0.81	0.59		4	4	0.63	1.67	6.88	3.45	50		
	8 Lovas Far Schoolh		1451		26	8.2	3.9			14	5	131	4734	888	24		0.73	0.34		3	3	0.63	1.54		3.65	76		
	9 Lovas Far Schoolh		1451		26	8.3	3.5			12	7	106	3561	1203	26		0.6	0.3		3	3	0.66			3.68	85		
	O Lovas Far Schoolh		1451		26	8.2	3.6			11	20	232	5113	756	6		1.3	0.33		3	3	0.78	1.21		3.77	40		
	1 Lovas Far Schoolh		1451		26	8.2	3.6			12	9	148	4729	827	4		0.47	0.31		5	5	0.67	1.39		3.9	40		
	2 Lovas Far Schoolh		1451		26	8.3	3.5			11	6	156	4532	1017	6		0.36	0.32		2	2	0.62	1.62		2.96	64		
	3 Lovas Far Schoolh		1451		26	8.1	4.4			14	7	139	3905	1042	50		0.62	0.37		6	6	0.67	1.86		2.95	116		
	4 Lovas Far Schoolh		1451		26	8.1	3.6			13	7	132	4619	968	4		0.64	0.31		7	7	0.76	1.47	15.25	3.77	32		
	5 Lovas Far Schoolh		1451		26	8	4.1			16	7	119	3685	800	6		0.66	0.28		2	2	0.57	1.25	7.62	2.95	49		
	6 Lovas Far Schoolh		1451		26	8.4	3.7			11	15	98	3693	1154	12		0.5	0.22		6	6	0.58			2.97	64		
	7 Lovas Far Schoolh		1451		26	8.5	3.3			13	15	108	3486	1531	8		0.33	0.28		3	3	0.69			3.2	68		
	8 Lovas Far Schoolh		1451		26	8.6	2.7			5	8	204	4501	1105	8		1.84	0.21		6	6	0.74		5.62	3.4	33		
	9 Lovas Far Schoolh		1451		26	8.1	4.1			11	7	141	4660	696	4		0.64	0.25		6	6	0.7	1.32		3.6	45		
98710	O Lovas Far Schoolh		1451		26	8.4	4.5			10	12	192	4120	1372	12		0.54	0.25		6	6	0.8	2.19	5.73	5.18	49		
	1 Lovas Far Schoolh		1451		26	8.2	4.4			19	17	148	4118	1328	10		0.77	0.27		21	21	0.7	1.98	5.45	3.81	43		
	2 Lovas Far Schoolh		1451		26	8	4.3			11	7	149	3057	710	8		0.66	0.22		3	3	0.62	1.23	8.01	3.65	32		
98710	3 Lovas Far Schoolh	23 Traill	1451		26	8.3	3.5	9		9	19	124	3869	1344	14		0.42	0.22		2	2	0.63		5.1	3.14	50		
	4 Lovas Far Schoolh		1451		26	8.5	2.9	8		8	12	90	3479	1340	12		0.54	0.22		5	5	0.59			3.08	50		
	5 Lovas Far Schoolh		1451		26	8.6	2	8		8	24	82	2917	1412	24		4.52	0.25		27	27	0.58	1.71		2.94	64		
98710	6 Lovas Far Schoolh	26 Traill	1451	I NE	26	8.4	2.5			15	17	219	4291	892	6		0.81	0.28		4	4	0.75	0.99	6.89	3.69	26		
98710	7 Lovas Far Schoolh	27 Traill	1451		26	8.1	4.1			10	5	163	4336	675	8		0.61	0.22		2	2	0.59			3.3	36		
98710	8 Lovas Far Schoolh		1451		26	8.2	9			10	6	146	4245	915	8		5.09	0.22		6	6	0.67	1.56		4.03	69		
98710	9 Lovas Far Schoolh	29 Traill	1451	I NE	26	7.8	4.9	12		12	8	130	3298	857	6		1.54	0.19		4	4	0.64	1.22	9.33	4.02	51	24.19	
98711	O Lovas Far Schoolh	30 Traill	1451		26	8.3	3.4	-		9	10	109	4139	1002	8		0.42	0.22		2	2	0.64	1.64	6.34	3.24	50	29.54	
98711	1 Lovas Far Schoolh		1451		26	8.5	2.6			9	10	96	3555	1296	8		0.33	0.19		4	4	0.61	1.98	4.45	3.12	46		
	2 Lovas Far Schoolh		1451		26	8.1	2.2			7	7	73	3532	661	6		0.38	0.18		3	3	0.44	0.9		2.49	29		
98711	3 Lovas Far Schoolhe	33 Traill	1451	I NE	26	8.3	2.3	9		9	14	84	3239	844	8		0.36	0.22		9	9	0.5	1.16	6.99	2.87	51		
98711	4 Lovas Far Schoolh	34 Traill	1451	I NE	26	8.5	3	8		8	15	138	4235	1231	12		0.91	0.24		3	3	0.74	1.47	7.06	4.17	58	32.04	
98711	5 Lovas Far Schoolh	35 Traill	1451		26	7.9	4.7	13		13	14	145	3564	874	10		0.86	0.24		5	5	0.75	1.45	10.04	5.25	40	25.65	
98711	6 Lovas Far Schoolhe	36 Traill	1451	NE NE	26	8.1	4.4	12		12	13	147	3395	1180	10		0.68	0.22		1	1	0.7	1.76	7.45	4.66	46	27.39	


Grid Sampling

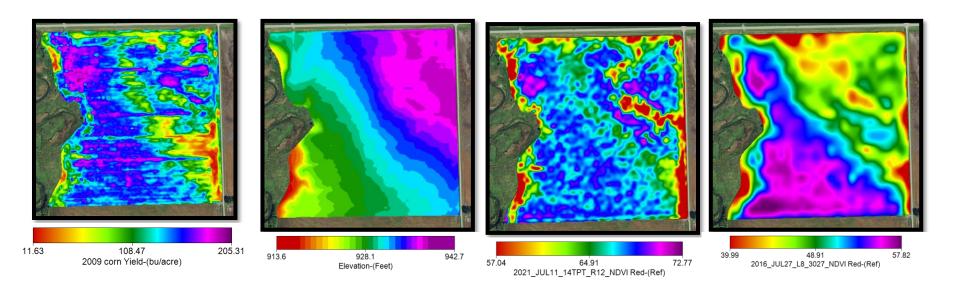
The Soil Sampling Explains the Variability of the Soil

Zone Soil Sampling

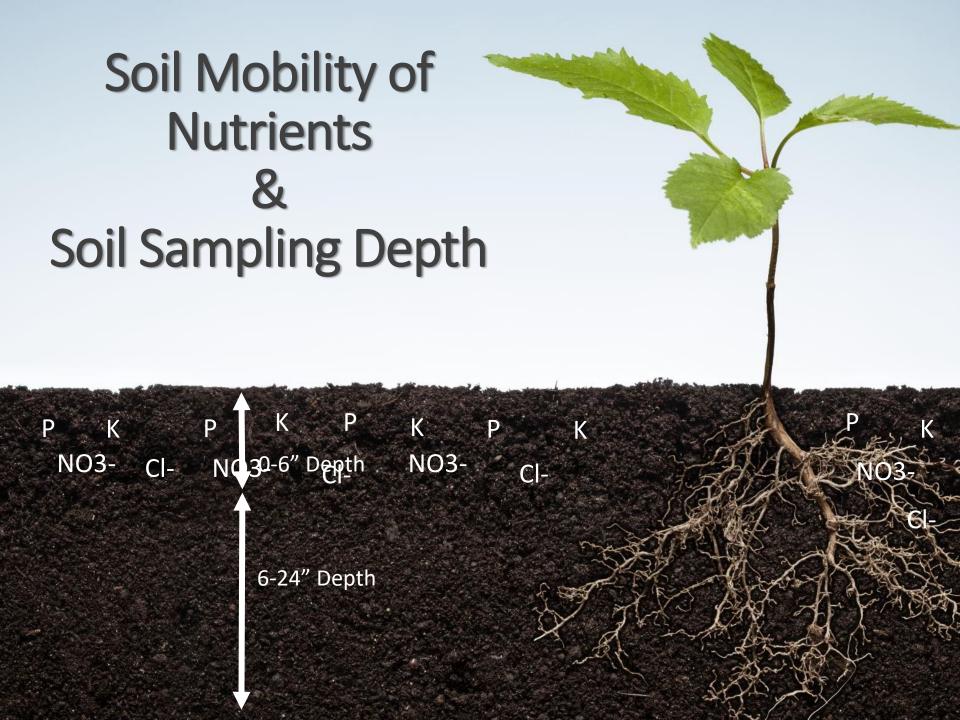
Combine data to describe field variability


Each Zone considered its own field

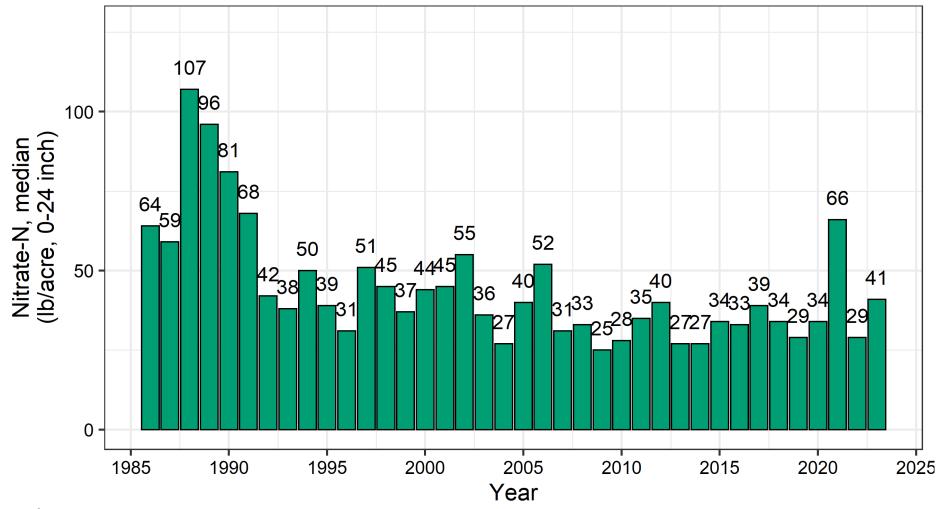
Approximately 15-20 cores per zone

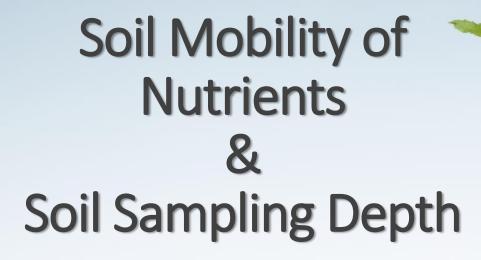

The Data Describes the Field Variability

Zone Soil Sampling

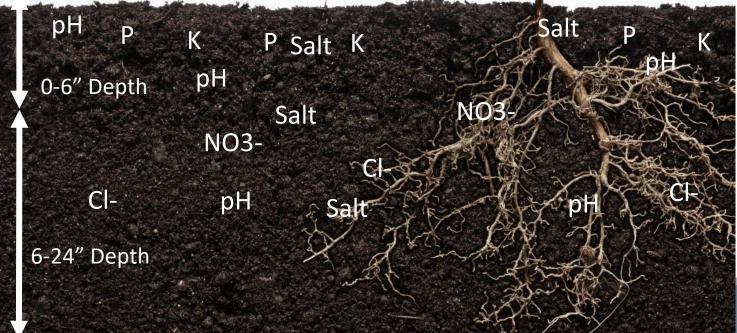


Zone Creation- Critical Component


- Data Explains Variability
- ACCURATE ZONES REQUIRED- INNACURATE ZONES = INACCURATE APPLICATIONS


Residual nitrate following wheat

Trend from 1986 to 2023



Data not shown where n< 100 AGVISE Laboratories, Inc.

Salt P pH K Cl-NO3- pH Salt

Composite

Flat Fields

Minimal Soil Type Changes

One Soil Type

Common Sample Depth-0-6, 6-24":

 Soil mobile & nonmobile nutrients

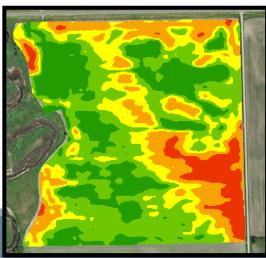
Least Expensive

Least Labor

Zones

Large Fields with Variability

Naturally Occurring Variability


Diverse Soil Types

Common Sample Depth – 0-6, 6-24"

 Soil mobile & non-mobile nutrients

Moderate Expense

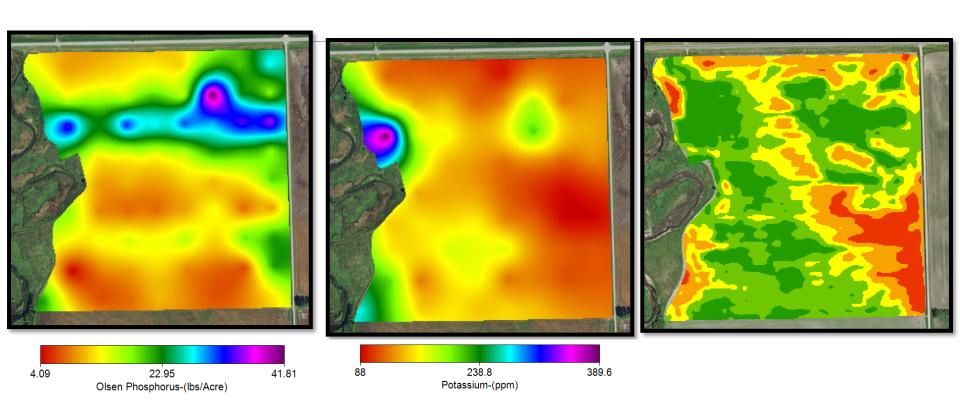
Moderate Labor

Grid

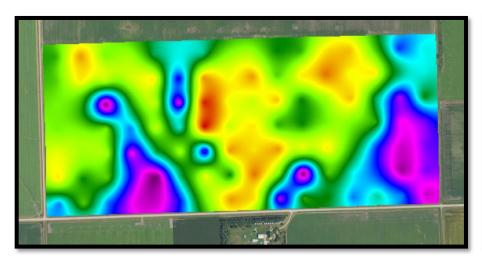
Zones do not describe variability well

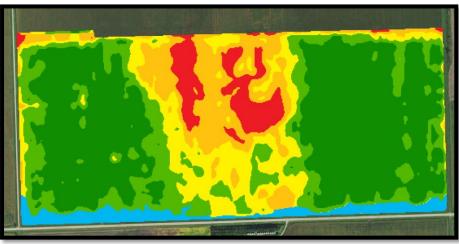
Man-made Variability – ie- manure

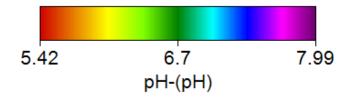
Common Sample Depth – 0-6"


 Soil Non-mobile nutrients

Most Expensive


Most Labor



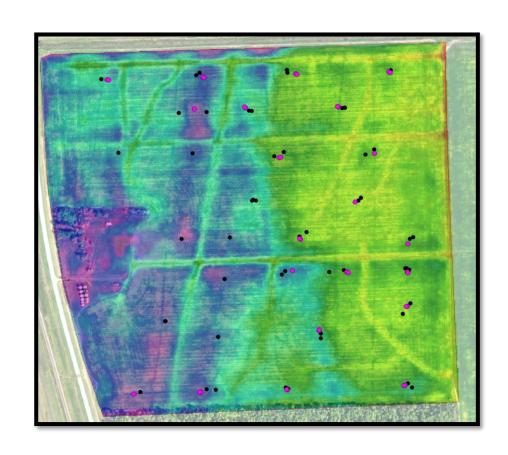

Grid versus Zones

Where Grids Fit In

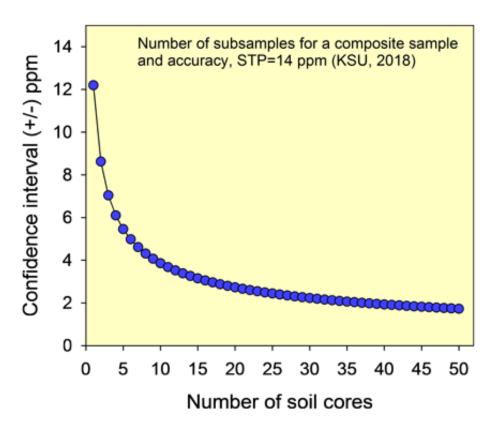
Stability in Composite Sample Results

Year	рН	ОМ	N1 lb	N2 lb	N-(N1+N2	P-O ppm	K ppm	ca ppm	Mg ppm	S1 lb	S2 lb	Zn ppm
2014	7.8	5.2	11	12	23	19	499	5.16	1445	10	72	0.67
2014 (redo)	7.7	5.1	10	6	16	14	372	6 75	1526	6	18	0.54
2015	7.5	4.9	4	9	13	13	342	4415	1265	4	30	0.58

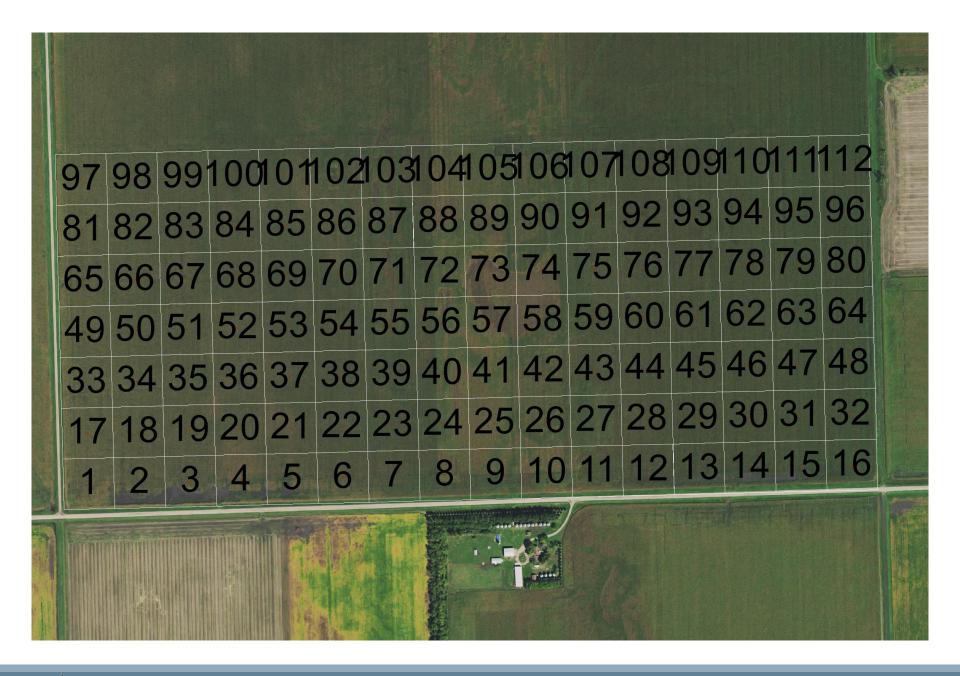
- Mark Sample Point
- Sample Same Points Every year
- Speeds up Soil Sampling
- Monitor soil non-mobile nutrients
 - P and K levels should be relatively stable
 - Also allows to monitor whether nutrients are being mined from the soil

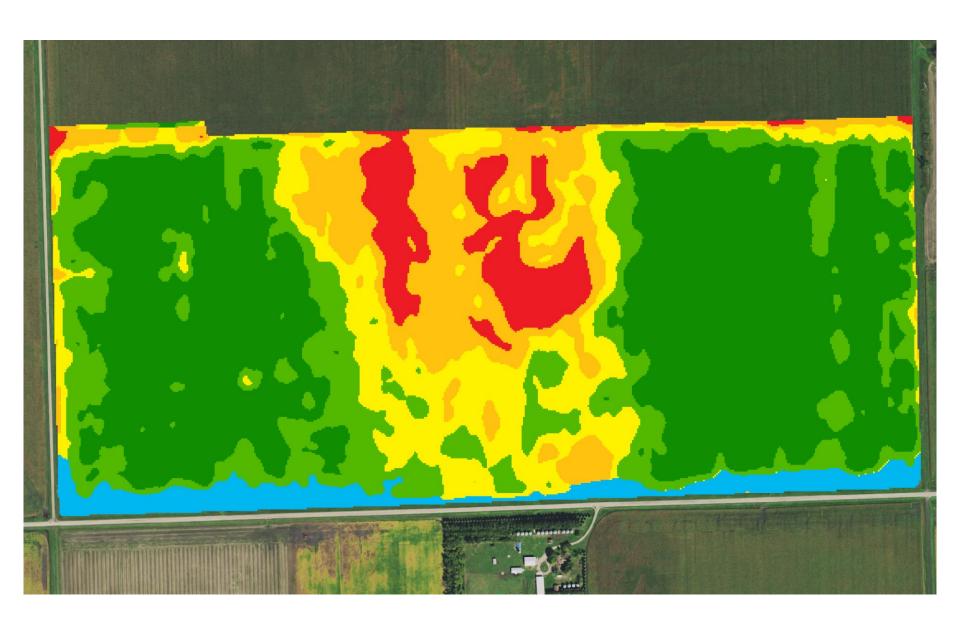

What is Variability

Lab Analysis Error


- Olsen-P:
 - ∘ 1-2 ppm on soils < 10 ppm
 - up to 2 ppm between 11-40 ppm

Sampling Error


- Sampling Depth
 - Are you pulling a 6" sample?
- How many soil cores per field?
 - Minimum 15 cores
 - Between 20-30 is best
- Sampling Location
 - GPS error
 - Human Error


How many Soil Cores for Accurate Sample Results

- Kansas State Dr. Dorivar Ruiz Diaz
- Composite Samples: at least 15 samples
- 20-30 cores is best
- Small areas (2-4 acres) 12-15 cores –Grid Sampling?

Cost and Labor- 265 Acre Field

Grids

- 2.37 acres/Grid
- 112 Grids and 10 cores per grid
 - 1,120 cores to pull
 - 4-5 hours to pull this field with Wintex 1000
- Analysis Fee -\$14.55 per Grid
 - \$1,862.40 (Total Analysis Fee)
 - (P, K, Zn, pH, SOM -0-6")
- Labor Costs
 - \$5-6/acre -\$1,860
- Total Cost \$3,722.40

Zones

- 6 Zones per field
- 15 cores per zone and 6 zones
 - 90 cores to pull
 - 1-1.5 hours to pull 0-6" and 6-24"
- Analysis Fee \$55.34 per zone
 - \$332.04 (Total Analysis Fee)
 - Agvise Complete 2 depths
- Labor
 - \$100-200 per field
- Total Cost = \$432.04

Composite

- Sample the whole field
- 30 cores total- 2 depths (45 min)
- Soil Analysis Cost- \$55.34 total
 - Complete -2 Depths
- Labor \$75.00 per field
- •Total Cost \$130.00

Corn Belt States and North Dakota: They Are Different

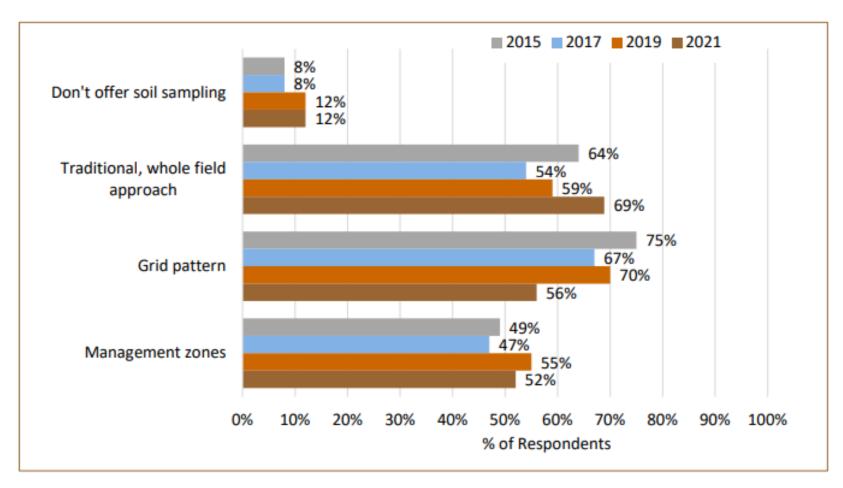
Soil Sampling is different

- Grids versus Zones
- Sample Depth- Corn Belt soil samples down to 6" and North Dakota samples down to 2'

Planters versus AirSeeders

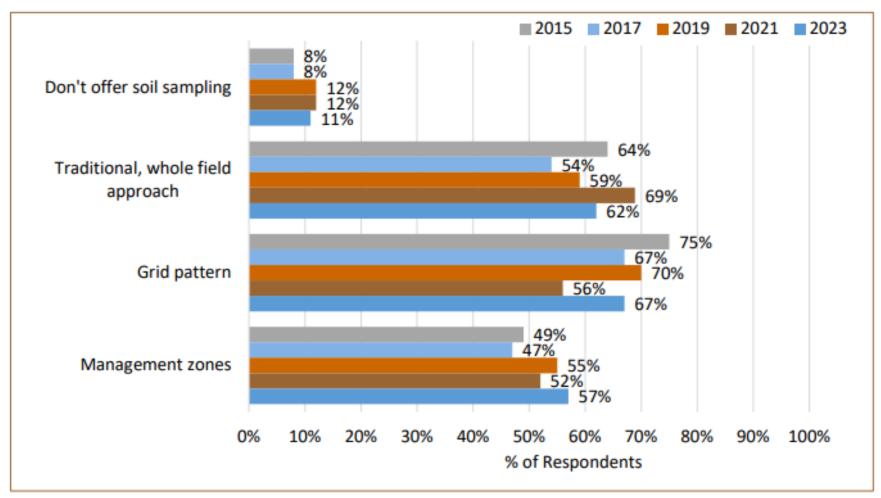
Adoption rates of Precision Agriculture are greater in the Corn Belt compared to areas dominated by wheat production

Field Size and Farm Acreage is different:


 Indiana Farm averages 269 acres versus 1,512 acres in North Dakota

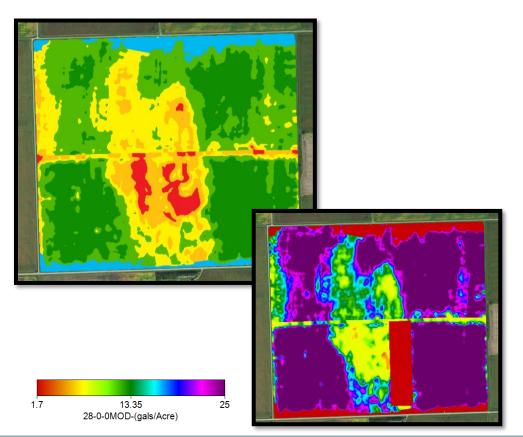
Land values are different:

- 2021 Corn Belt states cropland value average: \$6,880/acre
- 2021 Northern Plains states cropland value average:\$3,070/acre


Changes in Soil Sampling Practices?

Types of soils sampling services offered by retailers. CropLife Magazine/Purdue University 2021 Precision Agriculture Dealership Survey

Changes in Soil Sampling Practices?


Types of soils sampling services offered by retailers. CropLife Magazine/Purdue University 2023 Precision Agriculture Dealership Survey

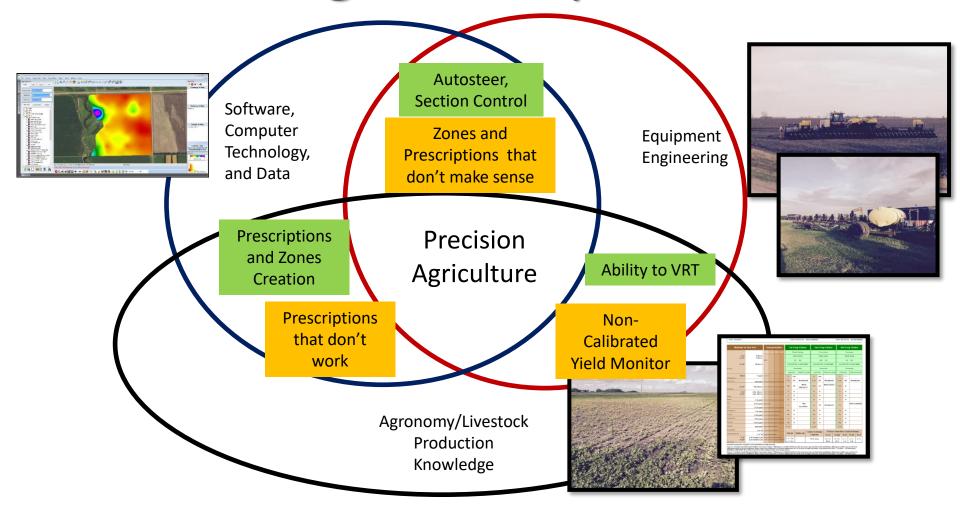
Information Intensive Technologies:

Require specialized skills to interpret data and create efficient ways to use agronomic inputs.

ie- VRT applications and zone creation

Embodied Knowledge Technologies:

Do not require additional skills for operation. *ie- autosteer, section control*


Autosteer versus VRT

Autoguidance and autocontrols on inputs are now mostly standard equipment across dealerships, partially because they are relatively simple to use and the benefits are relatively obvious. Guidance and section controllers don't depend on site-specific information to extract value, only location and previous applications. They help reduce input costs by reducing skips, overlaps and duplicate applications. In contrast, the information-intensive side of precision farming continues to lag in demonstrating value. Using site-specific information from fields, such as remote sensing imagery, soil test results, soil or yield maps, to characterize and understand field variability and its impact on crop performance, and then to act upon that by variably managing fields—has been a greater challenge than many would have predicted two decades ago.

Page 18 from 2020 Agriculture Dealership Survey (CropLife Magazine & Purdue University)

Successful Precision Agriculture Programs Require...

Summary

☐ Composite Sampling — Georeference your points and monitor variability ☐ Georeference the sample points
☐ Monitor variability from year to year
□ Zones
☐Great way to get start describing field variability
■Moderate expense and labor
■Must have accurate zones to work well
□Grids
☐Great way to describe man-made variability and further describe variability that zones is not handling well
■Most expensive and labor intensive
□Successful Precision Agriculture Programs Include:
☐ Agronomy Knowledge, Software Knowledge, Equipment Knowledge

