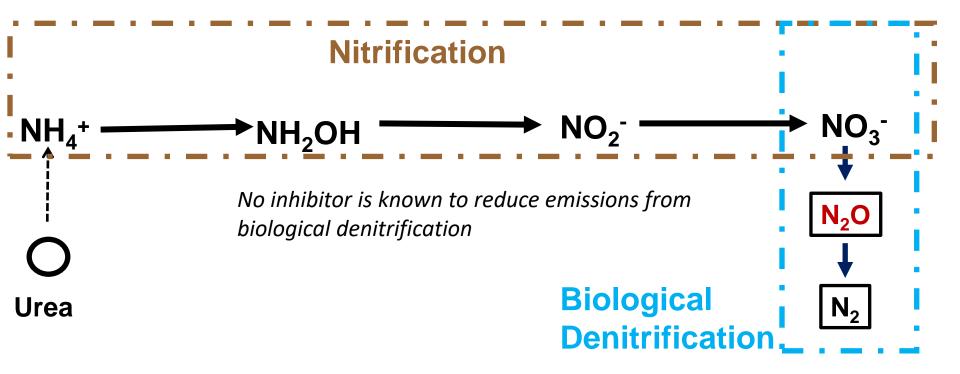
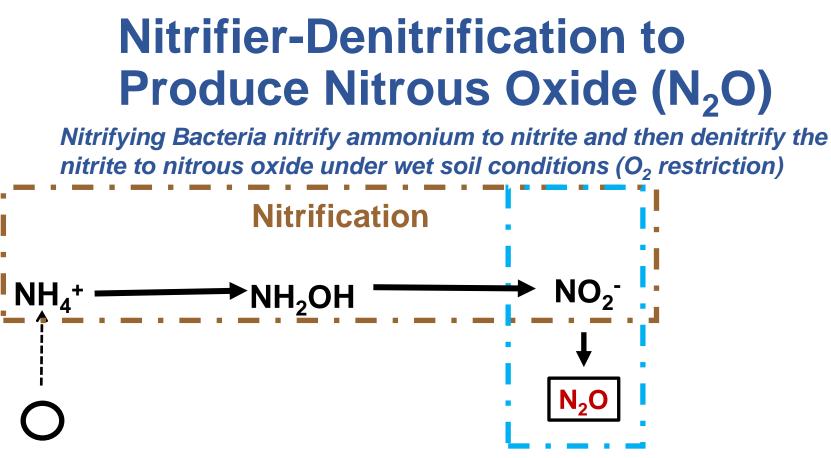
Clarifying What Enhanced Efficiency Nitrogen Fertilizers Are

Prepared by Mario Tenuta NSERC/WGRF/Fertilizer Canada Senior Industrial Research Chair 4R Nutrient Management

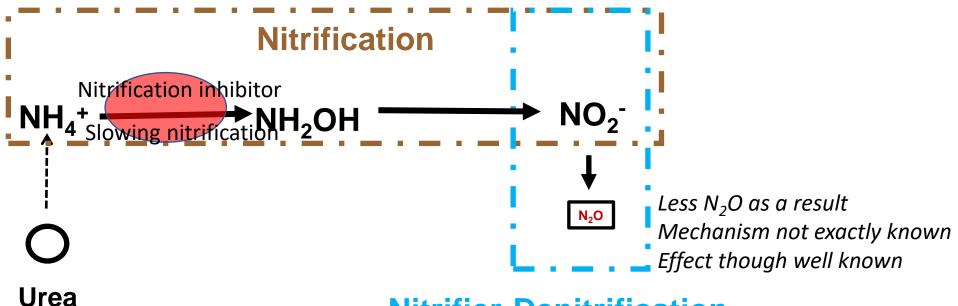

Agvise Seminar March 12, 2024

Denitrification Producing Nitrous Oxide (N₂O)


Bacteria in soil do nitrification and denitrification

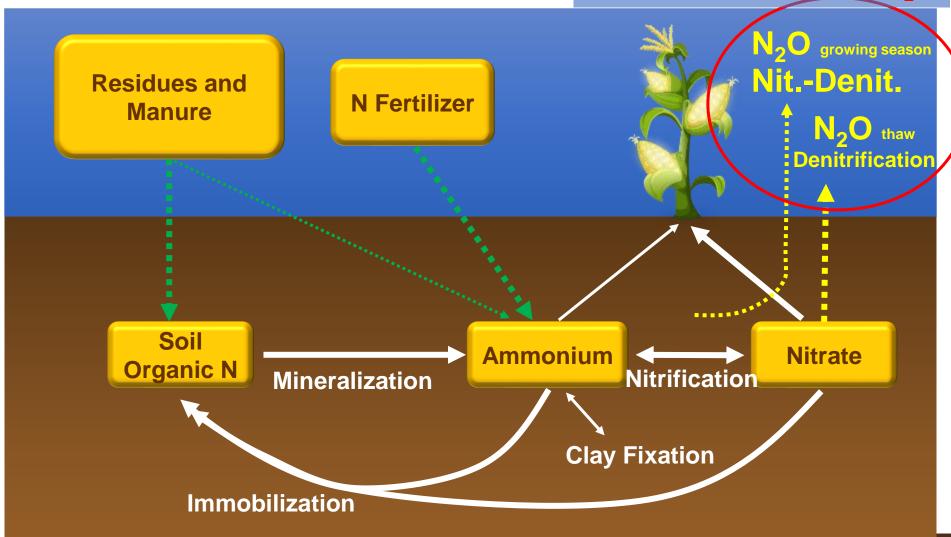
In the Prairies, this process is the dominant source of N_2O emissions at thaw Tenuta and Sparling (2010)

Urea

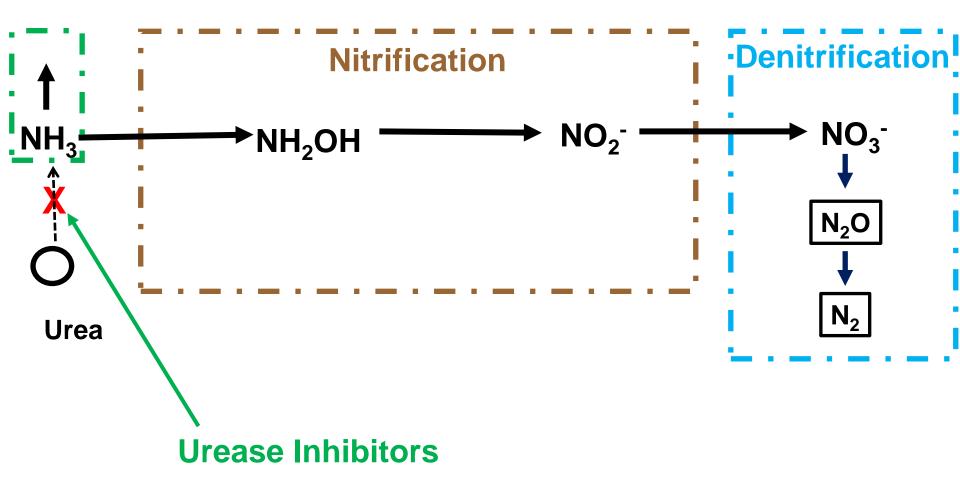

Nitrifier-Denitrification

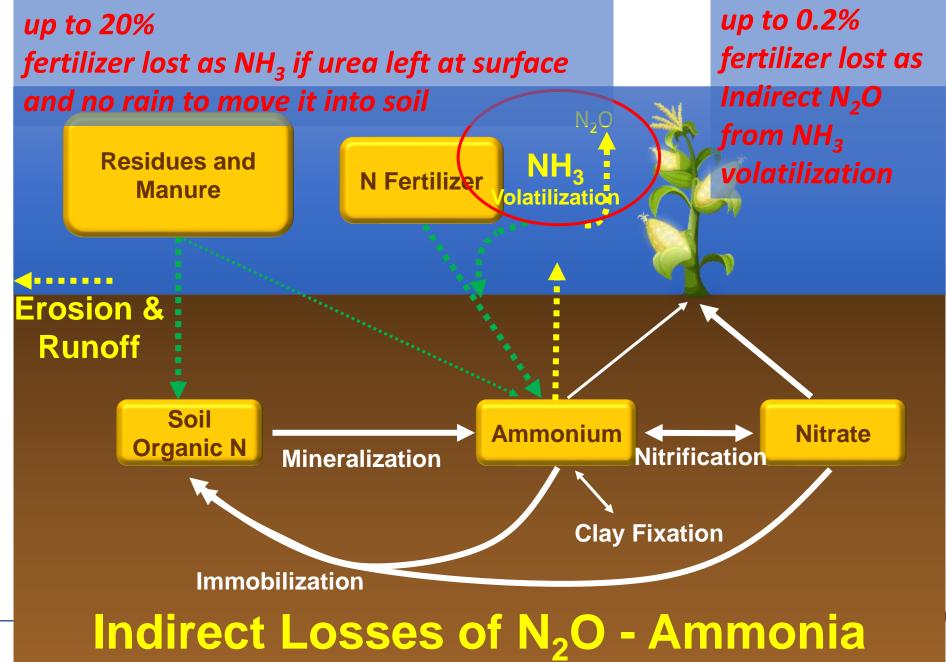
In the Prairies, this process is the dominant source of N₂O emissions other than at thaw (Runzika 2017, M.Sc. Thesis; multiple studies showing nitrification inhibitors reduce N₂O emissions from ammoniacal fertilizer N forms; Williamson (2011) Showing addition of ammoniacal fertilizer N but not nitrate at planting results in N₂O emissions)

Nitrifier-Denitrification to Produce Nitrous Oxide (N₂O)


Nitrifier-Denitrification

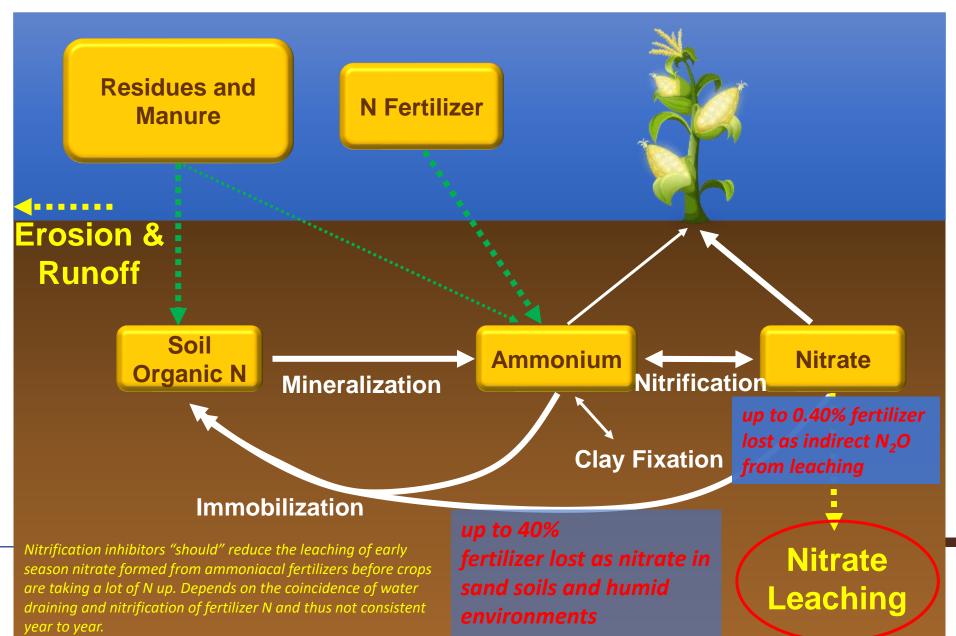
Direct Emission of N₂O


0.3 to 3% of fertilizer lost as Direct N₂O



Nitrification inhibitors reliably decrease N₂O emissions from ammoniacal sources of N because Direct Nitrifier-Denitrification emissions are reduced

Urease Inhibitors


Reduces NH₃ Volatilization when urea remains at the soil surface

Urease inhibitors reliably decrease NH₃ Losses from urea and thus lower indirect N₂O emissions from NH₃ volatilization. However, not many studies have quantified NH₃ losses in the Prairies

Indirect Loss of N₂O – Nitrate Leaching

Enhanced Efficiency (EEF) N Fertilizers

N Stabilizers

- o Urease inhibitor
- o Nitrification inhibitor
- Double (urease and nitrification) inhibitor

• Controlled Release N

o Polymer Coated Urea

Slow Release

 Sulfur-coated Urea, Methylene Urea, Isobuylidene Diurea, Urea Formaldehyde, Urea Triazone

Some N Stabilizers in the Market

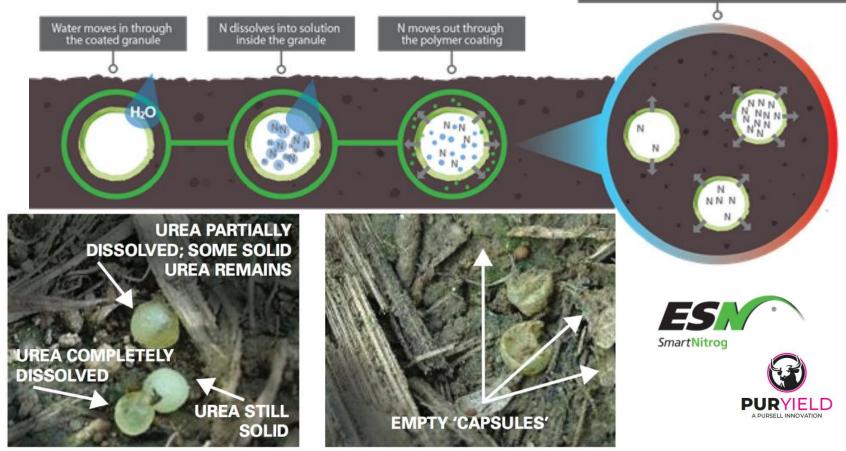
Nitrification Inhibitor Compounds

- N-serve (50+ years old) [N-Serve, eNtrench]
- DCD (60+ years old) [SuperU, Agrotain Plus]
- DMPP (15+ years) [ArmU Advanced, Entec]
- DMPSA (3+ years, not available here) [none]
- Pronitridine (just available) [Centuro]

Urease Inhibitor Compounds

- NBPT (20+ years old) [Agrotain, eNtrench, Agrotain Plus]
- NPPT (5+ years) [Limus: not available here]
- Duromide (2+ years) [Anvol]

Polymer Coated Urea


- Polymeric resin coated fertilizer developed in 1960 by ADM Company – Osmocote and sold by Scotts Company
- Refined coating (Polyon) in 1991 by Purcell Technologies
- Developed for Hort industry
- ESN introduced for crops by Agrium 2003
- KOCH now holds patent for Polyon

Polymer Coated Urea

Controlled release technology = Nitrogen (N) releases in response to changes in soil temperature. So N is available when the crop needs it most.

- Blend 70 (polymer coated) : 30 (urea) ratio in RRV
- Place subsurface
- Place at planting or before
- Provides good measure of urea seed safety
- Note ESN is 44% N and not 46% as urea is

Many 4R Practices Significantly Reduce N₂O Emissions but Don't Change Yield

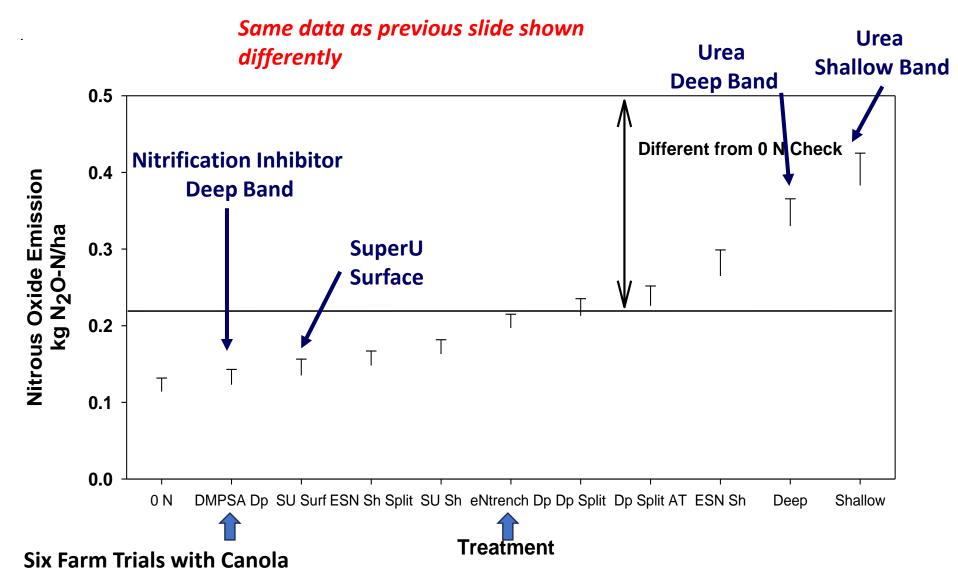
Management Practice	Site Years	N ₂ O Reduction %*	Yield Reduction %
Nitrification Inhibitors	22	32	1
Polymer Coated Urea (ESN)	21	27	increase 2
Deep Banding	16	3	1
N Fixing Legumes	15	61	NA
Split N Application	13	48	increase 3
Fall Application	7	increase 36	increase 1
Shallow Banding	6	increase 89	5
Cover Crops	4	1	
Organic Production	2	17	32

Summary of Field Studies by the 4R Chair Program from 2010-2021

Tenuta et al. 2023 Agron J (Canola)

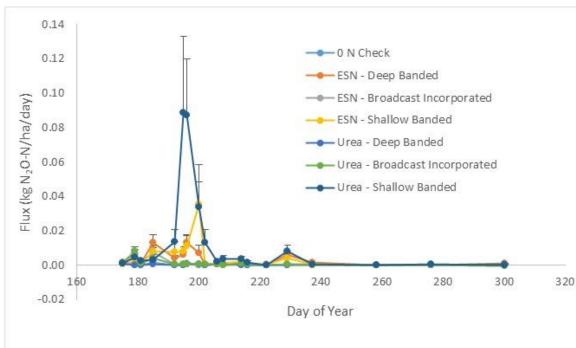
Table 5. Growing season cumulative N₂O emissions (Σ N₂O_{GS}) as influenced by fertilizer treatments for the six site-years of this study. Urea_{BI}: broadcast-incorporated urea; Urea_{SE}: shallow-banded urea; Urea_{DE}: deep-banded urea; SuperU_{BI}: broadcast-incorporated SuperU; SuperU_{SE}: shallow-banded SuperU; SuperU_{DE}: deep-banded SuperU. Values are means \pm 1 standard error and numbers of observations (n) are indicated.

Tarata (Carrier			$\Sigma N_2 O_{GS}$ (1				
Treatments/Groups	Carman-2014	Kelburn-2014	Carman-2015	Oak Bluff-2015	Brunkild-2016	Domain-2016	
Treatments							
Control (n=16)	0.12±0.02 d	0.14±0.03 d	0.28±0.05 c	0.05±0.01 c	0.06±0.02 d	0.08±0.03 c	
Urea _{BI} (n=16)	1.36±0.30 a	0.56±0.18 abc	1.18±0.32 bc	0.22±0.03 a	0.52±0.23 bc	0.67±0.16 b 🖣	Urea incorporated
UreasB (n=16)	1.10±0.27 ab	0.72±0.18 a	3.72±0.85 a	0.19±0.03 ab	1.13±0.29 a	1.66±0.31 a	
Urea _{DB} (n=16)	0.93±0.18 abc	0.30±0.06 cd	1.57±0.55 b	0.16±0.04 ab	0.95±0.28 ab	1.32±0.25 a	
SuperUBI (n=16)	0.80±0.13 bc	0.67±0.15 ab	0.87±0.13 bc	0.13±0.01 b	0.35±0.12 cd	0.55±0.13 bc	Urea shall banded
SuperU _{SB} (n=16)	0.47±0.06 cd	0.56±0.12 abc	0.87±0.17 bc	0.14±0.03 b	0.66±0.15 abc	0.55±0.12 bc	
SuperU _{DB} (n=16)	0.44±0.05 cd	0.32±0.06 bcd	1.09±0.18 bc	0.13±0.02 b	0.66±0.17 abc	0.68±0.10 b	SuperU placements
Groups						٢	
N additions (n=96)	0.85±0.08	0.52±0.06	1.55±0.21	0.16±0.01	0.71±0.09	0.90±0.09	
Urea (n=48)	1.13±0.15	0.53±0.09	2.16±0.38	0.19±0.02	0.87±0.16	1.22±0.15	
SuperU (n=48)	0.57±0.06	0.52±0.07	0.94±0.09	0.13±0.01	0.56±0.09	0.59±0.07	
BI (n=32)	1.08±0.17	0.61±0.11	1.03±0.17	0.17±0.02	0.44±0.13	0.61±0.10	
Banded (n=64)	0.74±0.09	0.48±0.06	1.81±0.29	0.16±0.02	0.85±0.12	1.05±0.12	
SB (n=32)	0.78±0.15	0.64±0.11	2.30±0.50	0.17±0.02	0.90±0.17	1.10±0.19	
DB (n=32)	0.69±0.10	0.31±0.04	1.33±0.29	0.15±0.02	0.80±0.16	1.00 ± 0.14	
Contrasts							
Control vs. Others	< 0.001	0.005	0.006	< 0.001	0.003	< 0.001	
Urea vs. SuperU	< 0.001	0.931	< 0.001	0.013	0.065	< 0.001	
BI vs. Banded	0.028	0.209	0.031	0.433	0.020	0.006	
BI vs. SB	0.100	0.816	0.003	0.735	0.025	0.007	
BI vs. DB	0.030	0.017	0.465	0.308	0.073	0.034	


Means within a column followed by the same lowercase letter are not significantly different at P < 0.05.

BI is deep thorough incorporation to 15 cm by roto-tilling SB is shallow mid-row banded 10 cm from every second seed row and at 2.5 cm depth DB is deep mid-row banded 10 cm from every second seed row and at a 7 cm depth

 Carman 2014 is sandy clay loam, Kelburn is clay, Carman 2015 is fine sand, Oak Bluff is clay, Brunkild is clay and Domain is clay

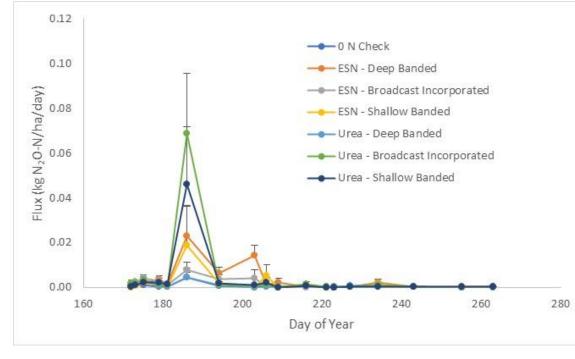

Evidence for Dual Inhibitor decreasing N₂O emissions regardless of placement method

Nitrification Inhibition Reduces N₂O (Canola)

Tenuta et al. 2023. in preparation

Tenuta et al. 2 in prep (Canola)

2022 Roseisle - Sandy


Evidence a single NI just as good if not better than subsurface band placement of Dual Inhibitor to decrease N₂O emissions

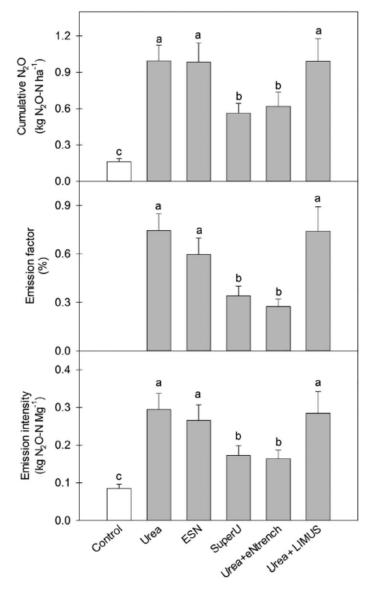
Mid-row banded 10 cm away from every second seed row and to a 4 cm depth Emissions are whole year

Tenuta et al. 2 in prep (Canola)

2022 Glenlea - Clay

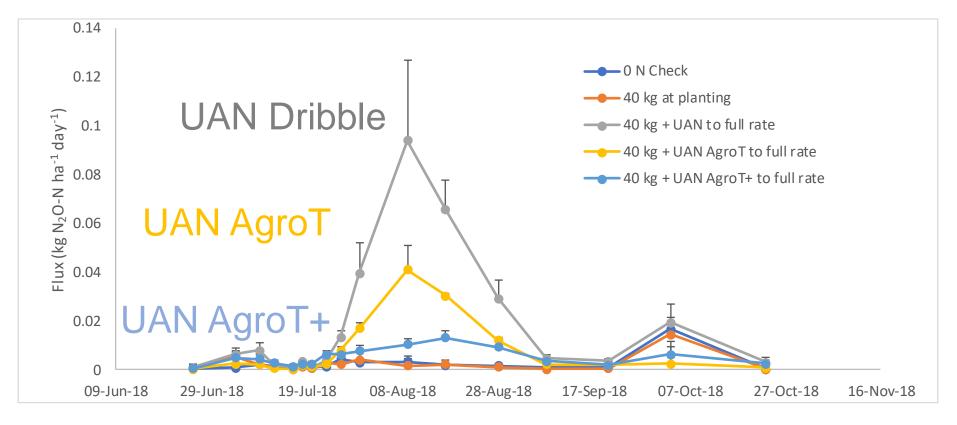
Evidence a single NI just as good if not better than subsurface band placement of Dual Inhibitor to decrease N₂O emissions

Mid-row banded 10 cm away from every second seed row and to a 4 cm depth Emissions are whole year


Wood et al. Agron J (HRSW)

- Warren is clay loam, Glenlea is clay, Carman is clay loam, LaSalle is clay, Kelburn is clay and Ridge is loamy fine sand
- All fields except Kelburn are farmer fields. Kelburn is Richardson research farm
- Ridge 2017 had a dry post-planting period with low emissions
- ESN is a 70/30 ESN/granular urea blend

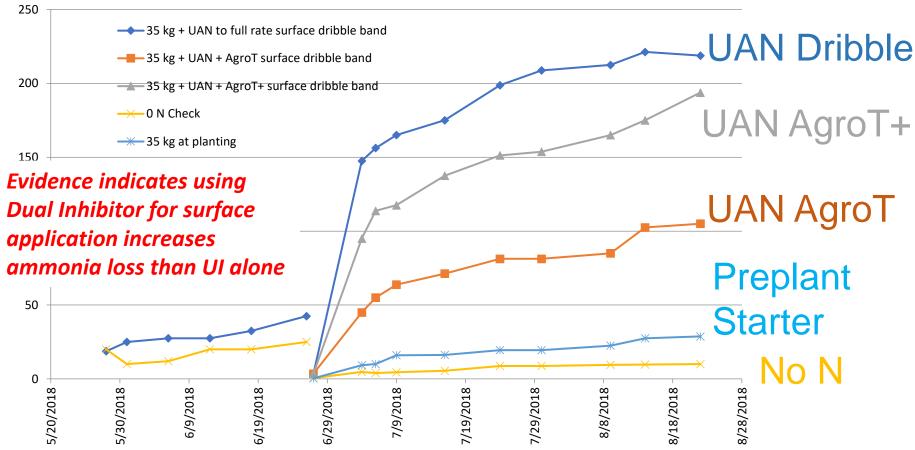
4R Senior Industrial

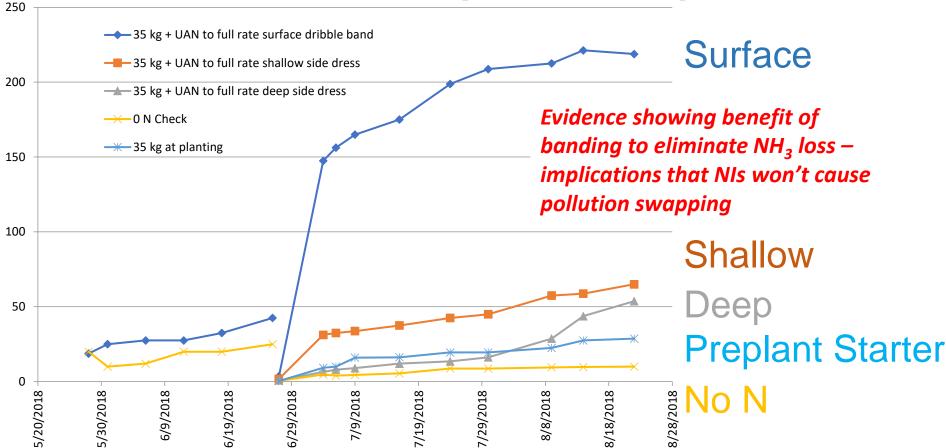

Research Chair

- Each mean of an N source treatment is the average of replicated fall and spring treatment plots (thus mean of 8 replicate plots per N source treatment)
- Single nitrification inhibitor (eNtrench) worked just as well as a double inhibitor product (SuperU)

FIGURE 7 Mean cumulative N₂O emissions, applied-N scaled emission factor, and yield-scaled emission intensity of fertilizer treatments across fall and spring applications at all site-years. Different lowercase letters on the bar indicated significant differences at p < 0.05. Means +1 standard error are presented (n = 48). eNtrench, nitrification inhibitor; ESN, environmentally smart nitrogen; LIMUS, urease inhibitor; SuperU, nitrification and urease inhibitor.

In-season UAN Dribble- Nitrous Oxide Losses (Canola)


Tenuta et al. in preparation

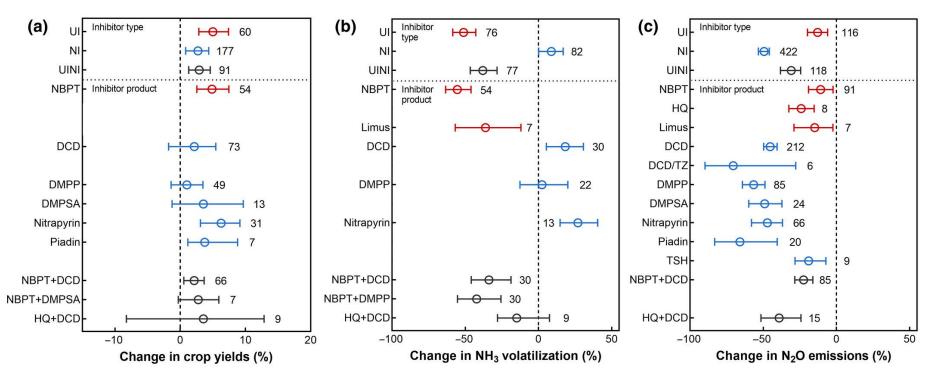

In-season UAN Dribble- Ammonia Losses (Manitoba) – Carman 2018 Corn Tenuta et al. *in preparation*

An example of qualitative emissions of NH₃ using passive denuders and single urease inhibitor and double urease and nitrification inhibitor

- Urease inhibitor alone worked best to reduce ammonia volatilization of top-dress UAN dribbled at V4 stage
- No trend for "pollution swapping" (i.e., urease inhibitor reduced NH_3 loss but increased N_2O emissions) from Tenuta et al. 2023 and Tenuta et al. in prep

In-season UAN Dressing- Ammonia Losses (Manitoba)

 Subsurface placement works well to reduce volatilization losses


Tenuta et al. 2023 in preparation

Nitrification Inhibitors Work to Slow Nitrification but Yield Benefit not Clear

- Don't know how to do field trials
- We do see inhibitors reduce nitrate appearance during the 2-3 weeks after application – so they work as intended
- We have a plethora of data showing nitrification inhibitors work to reduce N₂O emissions – so they do work to inhibit nitrification

Nitrification Inhibitors Haven't had big Effect on Yields Elsewhere

- Global meta-analysis of studies showed nitrification inhibitors to increase yield about 2.5%
- Statistical effect of treatment to increase yield 2.5% in a study is very difficult

Fan et al. 2022 Global Change Biology

Break Even Point (BEP) Analysis for Grain Corn

Paying for EEFs Requires More Yield, Less N Added, C Market Payment, or \$ Incentives

Corn \$7/bu Assume rate 180 lb N/ac

Product	\$/Ib N	\$/ac	bu BEP	lb N/ac BEP	Morden Windsor N ₂ O Credit \$/CO ₂ tonne BEP			
Urea (46-0-0)	1.41	254		180				
Urease Urea (46-0-0)	1.49	268	2	170	NA	NA		
Double Inhibitor Urea (46-0-0)	1.54	277	3	165	300	50		
Polymer Coated Urea (44-0-0)	1.61	290	5	158	600	NA		

30% N Reductions is 126 lb N/ac

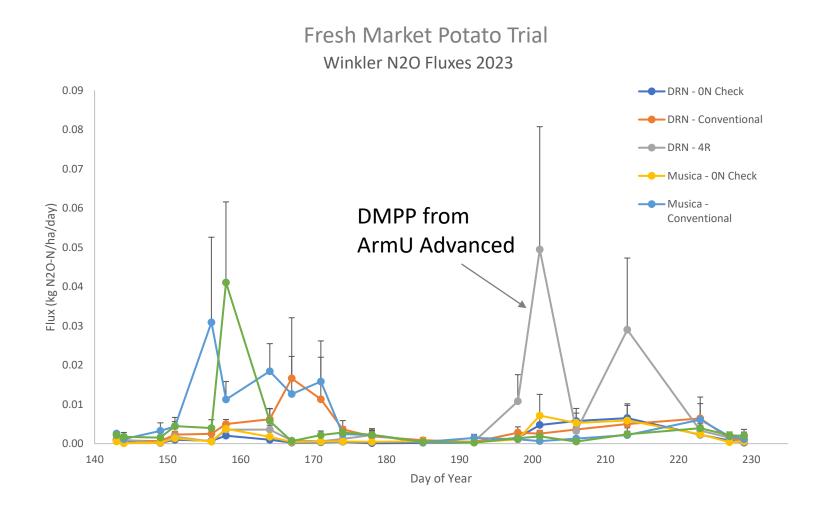
Tenuta, M. current analysis

OFCAF Program \$75,000 to Dual Inhibitors and PCU

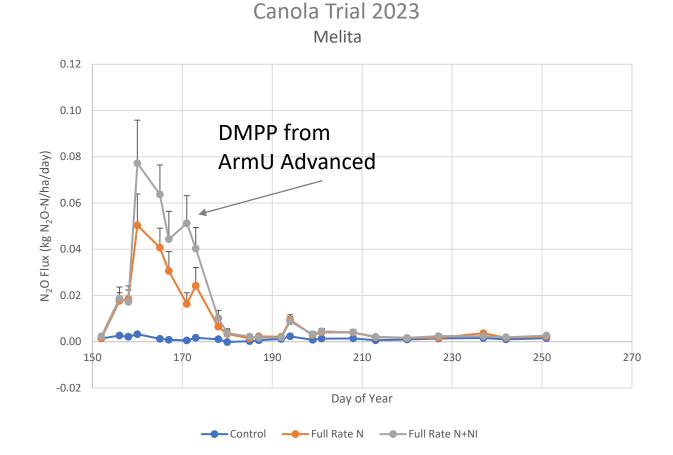
We Haven't Used Nitrification Inhibitors in High N Loss Conditions

- For yield to increase, N losses must limit productivity
- We have been using the products for fall, spring and inseason application
- Fall application do see reduced N availability but nitrification inhibitors have not protected N sufficiently long – more studies needed
- Haven't had high enough moisture conditions following planting to leach applied N where benefit of nitrification inhibitors would be seen

How to Use?

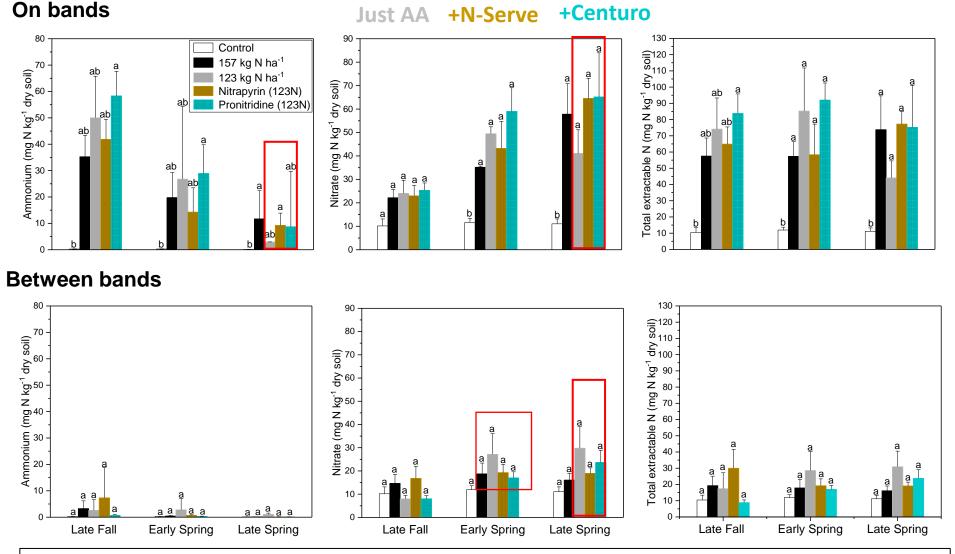

- For urea remaining at the soil surface, use a single urease inhibitor
- Subsurface band place N fertilizers 3" or more deep
- Use single nitrification inhibitor when N fertilizers are subsurface placed (incorporated or banded)
- Doesn't hurt to use dual inhibitor when N fertilizers are subsurfaced placed (may be benefit of urease inhibitor with urea for seed safety)
- There is an advantage of dual inhibitor products treated in manufacturing they flow better for application than dual inhibitor or single inhibitor treated at the retailer or on-farm
- Consider reducing N rates when using EEFs (10%)
- Break even for yield on EEF cost is 3-6 bu/acre

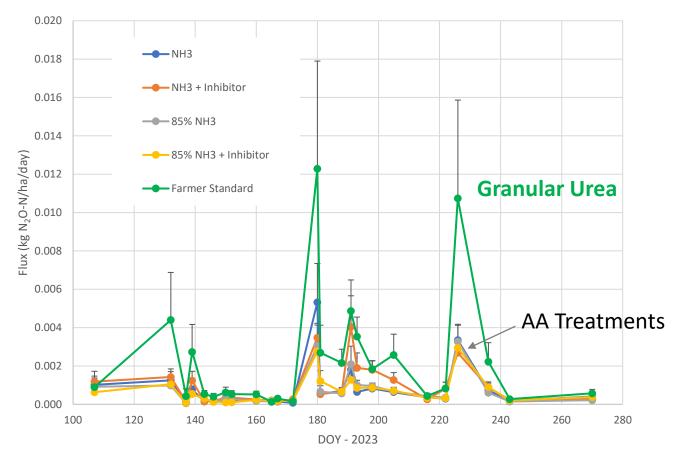
How to Use?


- PCU urea has increased seed safety
- PCU has increased convenience
- Don't leave PCU at soil surface
- Blend PCU with urea
- Don't use PCU mid-season

But

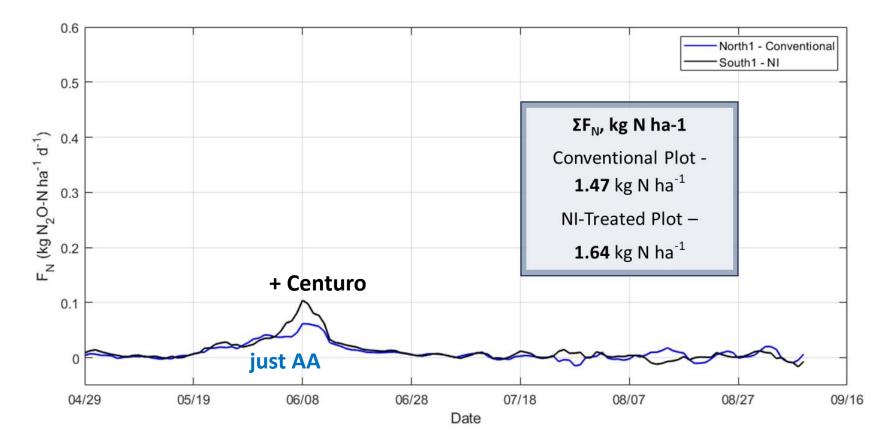
- Starting to examine newer nitrification products
- Performance of these not clear


DMPP from ArmU Advanced



Silverwinds (2020-21) Fall Applied Anhydrous

Fig. 1 Effect of nitrification inhibitors (N-Serve and Centuro) on soil (0-30 cm) ammonium (NH_4^+ -N), nitrate (NO_3^- -N), and total extractable nitrogen (NH_4^+ -N + NO_3^- -N) concentrations in the NH_3 banded and between the banded rows (15 cm away from the bands) on different sampling times at Silverwinds (2020-2021). Means with different letters within a sampling time are significantly different (P < 0.05) according to Tukey's multiple comparison procedure. Error bars indicate standard errors of the means (n=4). (Late Fall = Nov-07, Early Spring = Apr 27, Late Spring = May 12).

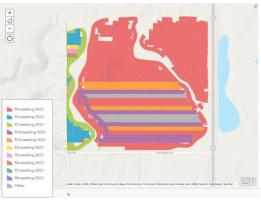

Fall AA with Centuro – Sperling Grain Corn

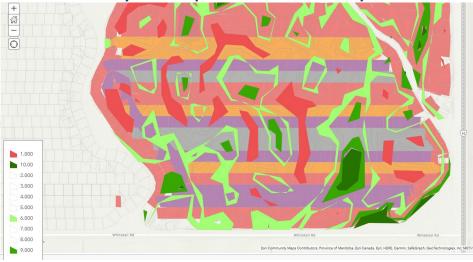
Spring Applied Centuro – Clearwater Grain Corn

Why Are We Seeing Some Newer Products Not Working?

- I believe it comes down to concentration of the active nitrification inhibitor ingredient
- Concentrations of nitrification inhibitor can vary 50X between products on the market
- Inhibitors applied based on field area and not N rate are more likely to be successful in inhibiting nitrification

Precision 4R Variable N Rate and Variable N Source




Identify N Management Zones and Prescription Map

		TM	AL.	(22)	Andro	w Farn		•		•	1-14-1	0			cres: 13	(121.0	CPS)
				(22)	Andre	wrarn	1 eas	ι				-		P	cres: 13	0(131.9	GF3)
rop:	Canola								Ma	chine C	Control	ler: iCo	n				
ast (Crop: W	/heat							Pre	scripti	on File	: Super	UAndE	astCan	23		
ield	Goal (b	u/ac) 65.4															
		YieldGoal	Urea	Super U										-			
one	Acres	(bu/ac)		Layer 2	aver 3	aver 4	Laver	5	Actua	Eertilit	v Rates						-
	12.5	55	270	Layor 2	cuyor o	Cayer 4	cayer	124- 0			,		·				
									-	-						100	
	17.5	60	275					126- 0							-		
	18.8	65	295					136- 0	-	-				1.			
	18.7	70	233	77				142- 0	- 0 -	0					1.4		C 6 1
	18	75	155	155				142- 0	- 0 -	0				1 C		U CV	× 1
	17	75	77	233				142- 0	- 0 -	0							
	12	75		310				143-0	- 0 -	0					1 <i>6</i> ~		
	10.2	60		275				126- 0	- 0 -	0				2.4			
	6.6	40		205				94 - 0								12	
,	1.9	25		135				62 - 0						5			
			166.6	122.6				133- 0					·	100	(2 1)		
	Average	60.4	166.6	122.6				100- 0	- 0 -	0					11 B B	<u>مر</u> دد	
														7			
ote	s:																
Fiel	d Area	% Field			N(21)	OM %	pH	p	к	s	CI	Zn	Cu	В	Texture	Salinity	CMPT Date
Z 0	ne 1,2	23			17	4.0	7.9	11 (Olsen)	358	43	7	0.6	0.5	0.9	1 CALINE C	0.36	Nov 01, 202
	ne 3,4	28			28	5.8	7.3	14 (Olsen)	252	72	9	0.7	0.5	1.0		0.47	Nov 01, 202
	ne 5,6	26			32	5.8	7.1	13 (Olsen)	285	69	12	1.0	0.6	1.0		0.40	Nov 01, 202
	ne 7,8	17			16	5.7	7.8	28 (Olsen)	283	160	23	1.5	0.8	2.2		1.52	Nov 01, 202
200	ie 9,10	6			89	7.1	8.2	39 (Olsen)	244	160	37	1.5	1.0	4.1		3.97	Nov 01, 202

Farmer Conducts Experimental Strips

Overlay Test Strips and Zones and Sample

Contact Information

Mario Tenuta

Senior Industrial Research Chair in 4R Nutrient Stewardship

Department of Soil Science

University of Manitoba

mario.tenuta@umanitoba.ca

Phone: 204-290-7827

www.soilecology.ca

