SCN: What Do We Do Now?

Mario Tenuta NSERC Senior Industrial Research Chair

Agvise Seminar March 12, 2024

The Quick March North

Table 1. Estimated soybean yield losses from diseases in the top 28 U.S. soybean-producing states and Ontario, Canada, in 2015.

Disease/Pathogen	2015 Estimated Yield Losses for U.S. (thousands of bushels)	2015 Estimated Yield Losses for Ontario (thousands of bushels)						
Root Rots and Seedling B	lights							
Soybean cyst nematode	109,288	3,696						
Seedling diseases (caused by species of <i>Fusarium</i> , <i>Pythium</i> , or <i>Rhizoctonia</i>)	62,948	2,957						
Root-knot nematode	12,366	0						
Reniform nematode	4,438	0						
Other nematodes (lesion, Columbia lance, sting, stubby root)	1,465	148						
Leaf and Aboveground Diseases								
Septoria brown spot	26,868	37						
Frogeye leaf spot	17,662	15						
Cercospora leaf blight	12,840	0						
Downy mildew	4,383	7						
Bacterial diseases (bacterial blight and bacterial pustule)	2,774	4						
Virus Diseases (AMV, BPMV, SbDV, SMV, SVNV, TRSV, TSV)*	2,602	74						
Other leaf and aboveground diseases (Phyllosticta leaf spot, target spot)	2,427	0						
Purple seed stain	1,594	15						
Rhizoctonia aerial blight	652	0						
Soybean rust	157	0						

2015 Soyben Disease Losses U.S. and Ontario

Stem Diseases						
Sudden death syndrome	43,776	2,218				
Sclerotinia stem rot (also known as white mold, caused by Sclerotinia sclerotiorum)	40,083	2,957				
Phytophthora root and stem rot	28,275	1,479				
Charcoal rot	20,808	15				
Brown stem rot	17,389	74				
Stem canker	12,349	222				
Pod and stem blight	10,718	296				
Anthracnose	5,188	0				
Diaporthe/Phomopsis complex (seed rot)	3,612	44				
Fusarium wilt and root rot	3,169	1,109				
Other stem diseases (Phymatotrichopsis root rot, red crown rot, taproot decline)	2,253	o				
Southern blight	523	0				

*AMV = alfalfa mosaic virus, BPMV = bean pod mottle virus, SbDV = soybean dwarf virus, SMV = soybean mosaic virus,

TRSV = tobacco ringspot virus, TSV = tobacco streak virus.

Cropprotectionnetwork.org

Soybean Cyst Nematode (SCN)

- Is a nematode (round worm) that parasitizes roots of soybean
- Like people, not all nematodes are bad, but SCN is bad
 Source: Swiss Federal Research Station for Agroecology

The Life of a SCN Female

Female Settles Down to Feed and Produce Eggs

Female Becomes Cyst Eventually Rupturing and Releasing Eggs

Source: Edward McGawley, Louisiana State University

White, lemon-shaped cysts on roots

Source: Albert Tenuta OMAFRA

SCN Survey of Manitoba 2012-2015

- 76 soybean fields sampled
- > 5500 soil samples
- 487 composite samples for processing
- Priority fields based on
 - Proximity to water courses from U.S. that flood
 - Number of soybean years
 - History of dry beans
 - Sampled prone areas of fields

Few Juveniles and Cysts of Cysts Nematodes Found

Circumfenestrate

Bifenestrate

Tenuta Lab

Results 2012-15 for SCN

• Nothing

Species-Specific PCR for SCN

3 cysts yielding quality DNA but not positive For SCN

)		\) ()						
100bp	NTC	NC	218-1	220-1	220-2	221-1	221-2	221-3	221-4	221-5	238-1	246-1	265-1	PC	100bp	
100bp	NC	276-1	289-1	293-1	293-2	296-1	296-2	307-1	307-2	307-3	307-4	307-5	311-1	PC	100bp	

Positive control SCN yielding good DNA and giving band for SCN

Tenuta Lab

Manitoba 2017-2018 SCN Survey

• Fall 2017, 30 soybean fields soil sampled

PhD student: Nazanin Ghavami University of Manitoba

Results 2017-2018

- Cyst numbers were 1, 2, 4, and 14 kg⁻¹ soil for each of the fields
- PCR of 7-12 lemon-shaped cysts for the CoxIII gene & SCAR gene regions were SCN
- DNA sequencing of 18s and ITS genes also confirmed cysts were SCN
- Morphology of cysts and nematode juveniles also consistent with being SCN

- In 2019, soy grown on field in Norfolk Treherne
- Visited the field twice and on second visit found SCN on roots of soy

Results 2019

SCN in Manitoba 2019

Soybean Dwarfing Patch in late June 2021

Table 1. Crop rotation history in thesymptomatic field

Year	Сгор
2021	soybean
2020	Corn
2019	Navy Beans
2018	Wheat
2017	<u>Soybean</u>
2016	Corn
2015	<u>Soybean</u>
2014	Canola
2013	Corn
2012	<u>Soybean</u>
2011	Canola
2010	Corn
2009	Canola

Field Photo: Tenuta Lab

Soil E

Lab

Photo: Tenuta Lab

Photo: Mario Terruta

Photo: Tenuta Lab

SCN Infested Field 37.2 ha

Patch in Early Sept 2021

Photo of patch from Slide 11 later in early spring following rains Growth resumed, now starting pod filling but too late

Grid Analysis of SCN Levels in the Patch

				SCN Pa	atch Anal	ysis #egg	s/100cm	า3			
					North into	good Soy G	rowth				
	Distance (m)	0	10	20	30	40	50	60	70	Distance (m)	
	24	0	0		0	0		0	0	24	
	18	0	0		0	0		0	0	18	
West into good Soy Growth	12	0	295		2,540	68		38	65	12	East into good Soy Growth
	6	0	1,365	1,989	4,956	4,632	7,797	4,153	1,524	6	
	0	24	33		149	255		163	33	0	
	Distance (m)	0	10	20	30	40	50	60	70	Distance (m)	
					South Dirt	Road Edge					

Distribution of SCN in a Coarse Texture Field in Manitoba 2021

No Infestation 0 eggs/100g soil

> Low Infestation 533 eggs/100g soil

Medium Infestation 900 eggs/100g soil

SCN (HG) Type or Race Test of the MB SCN Population

Indicator Line= Source of Resistance	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Female index (FI)=	≥10%
1) PI 548402 (Peking)	0	0	0	0	0	0%	-
2) PI 88788	4	16	8	15	7	4.2%	
3) PI 90763	0	0	1	0	0	0%	-
4) PI 437654	0	0	1	0	0	0%	-
5) PI 209322	1	5	10	2	3	1.8%	
6) PI 89772	0	0	0	0	0	0%	-
7) PI 548316 (Cloud)	34	33	41	32	Х	14.6%	
Pickett	1	3	8	3	0	1.6%	-

 Resistance profile indicates on the way to overcoming PI 88788

HG type:7Race:3

HG type testing was conducted by SCN Diagnostics at the University of Missouri

HG Types in North Dakota

Chowdhury et al. 2021 Phytopath 111: 2100-2109

Soybean SCN Variety Resistance

- Majority of varieties contain the same resistance source (PI 88788)
 - There are a few other genetic options, but they typically don't yield as well as PI 88788 or Peking resistance sources
- In the U.S., SCN is overcoming PI 88788 resistance
 - Resistance testing of Manitoba SCN populations indicates SCN is on the way to overcoming Pl 88788 here too (Female Index =
 Sourd: 2r%) rio Tenuta, U of M and SCN Diagnostics, University of Missouri

The percentage of SCN populations in a state/province with elevated reproduction (>10%) on PI 88788

SCN in Manitoba 2021

The Quick March North Continues

SCN Densities MB and North Dakota

*In ND, are considered inconclusive results due to other nematode n the soil. In MB, have been confirmed as SCN using molecular methods.

Data adapted from NDSU, North Dakota Soybean Council (2013-2022), and Dr. Mario Tenuta, U of M (2019, 2021)

SCN Emerging Issue for Dry Beans

plant disease

Editor-in-Chief: Alison E. Robertson Published by The American Phytopathological Society

Home > Plant Disease > Table of Contents > Full Text HTML Previous Article | Next Article

February 2017, Volume 101, Number 2 Page 391 https://doi.org/10.1094/PDIS-09-16-1257-PDN

DISEASE NOTES

First Report of the Soybean Cyst Nematode Heterodera glycines Infecting Dry Bean (Phaseolus vulgaris L.) in a Commercial Field in Minnesota

G. P. Yan, A. Plaisance, I. Chowdhury, R. Baidoo, A. Upadhaya, J. Pasche, S. Markell, and **B. Nelson**, North Dakota State University, Department of Plant Pathology, Fargo 58108-6050; and **S. Chen**, University of Minnesota, Department of Plant Pathology, St. Paul 55108.

2016 stunted patches in dark-red kidney bean field

- Roots infested with SCN females
- Soybean last grown in 2010

Effects of SCN on Soybean

What does it do? Field symptoms?

- Takes away nutrients
- Water update disrupted
- Interferes with nodulation
- Damages roots (holes)

- Yellowed plants
 - Resembles Iron
 Chlorosis
- Stunted plants
 - Uneven height
- Early maturity
- Reduction of yield
- Fewer pods
- Damage shows earlier on sands

Integrated Management of SCN

Collect soil samples from fields to determine the situation - know your numbers!

Grow resistant soybean varieties

- Continue using and rotate varieties with PI 88788
- · Seek varieties with Peking, other sources of resistance
- Add other types of resistance when available

Grow nonhost crops (corn, wheat and other small grains, others)

Cover crops? (usefulness and consistency of results not yet determined)

Use nematode-protectant seed treatments

Use No-till

Damage Patches in Fields

Source: American Phytopathology Society

Source: Albert Tenuta OMAFRA

Can be Confused with Drown Outs

Can be Confused with Iron Chlorosis

Source: Jay Goos North Dakota State University

Sudden Death Syndrome Comes After SCN

Slide courtesy Albert Tenuta, OMAFRA

Avoid Host Plants in Fields

Crop Plants	Weed Plants
Adzuki Bean	American Vetch
Alsike Clover	Carolina Vetch
Bird's-foot Trefoil	Common Chickweed
Common Vetch	Common Mullein
Cowpea/Black-eyed Pea	Field Pennycress
Crimson Clover	Hemp Sesbania
Crownvetch	Henbit
Pinto, Navy, Cranberry, Black, Kidney,	Hop Clovers
<u>Great Northern</u> , Snap Bean	Milk Vetch
Hairy Vetch	Mouse-ear Chickweed
Lespedezas	Pokeweed
Lima Bean	Purple Deadnettle
Lupines	Purslane
Mung Bean	Shepherd's Purse
<u>Pea</u>	Wild Mustard
<u>Soybean</u>	Winged Pigweed
Sweet Clover	Wood Vetch

Avoid Too Much Soybean

Dry Bean Suitability to SCN

• Female index below 10% indicates resistance to SCN

NDSU

Risk Areas in Fields

Prevent Soil Movement Between Fields

- Purchase clean used equipment
- Wash implements and tires between fields
- Don't drive pickups between fields
- Clean footwear

Source: Sandra Sardanelli Univ. Maryland

Source: Greg Tylka Iowa State Univ.

Prevent Birds From Landing on Fields

Use Resistant Soy Varieties

Not Resistant

Not Resistant

Source: Albert Tenuta OMAFRA

Resistant Varieties Manitoba Seed Guide

HERBICIDE TOLERANT SOYBEANS VARIETY DESCRIPTIONS EASTERN MANITOBA

Manitoha	Company			Average				IDC		Resistance		
Maturity	Maturity			DTM	Yield %	Site Years	Hilum	Rating				
Zone	Group	Variety	Туре	+/- Check [†]	Check	Tested	Colour	(1–5)	Group	SCN	PRR	
	000.8	LS TRI8XT	R2X	-10	86	2	BL	1.9	ST	yes	1c	
	000.5	NocomaR2	R2Y	-9	94	12	BL	2.0	ST	-	1c	
Very Early-	000.9	S0009-M2	R2Y	-9	89	12	IY	2.0	ST	-	6	
Season	00.4	TH89004 R2X	R2X	-8	94	2	BR	1.8	ST	-	1c	
Zone	000.7	PS 00078 XRN	R2X	-7	95	8	BL	1.9	ST	yes	1c	
	00.2	Devo R2X	R2X	-6	94	8	BR	1.8	ST	-	-	
	000.9	RX000918	R2X	-6	103	2	BL	1.7	Т	yes	1c	
	00.1	P001A48X	R2X	-5	99	2	TN	1.7	Т	-	1c	
00	00.1	PV 11s001 RR2	R2Y	-5	90	12	Y	1.9	ST	-	1c	
	000.7	Karpo R2	R2Y	-5	104	2	GR	2.2	ST	-	-	
	00.2	RX00218	R2X	-5	89	8	BR	1.9	ST	-	-	
Fach	000.2	Notus R2	R2Y	-5	103	8	BL	1.6	т	-	1c	
Early-	00.3	P003A97X	R2X	-5	99	2	GR	1.9	ST	yes	1k	
Zope	00.1	Torro R2	R2Y	-5	100	12	BL	2.2	ST	-	-	
Zone	00.2	NSC Redvers RR2X	R2X	-4	97	2	BL	1.9	ST	yes	1c	
	000.9	PV 15s0009 R2X	R2X	-4	99	8	BL	2.0	ST	yes	1c	
	00.4	NSC Culross RR2X	R2X	-3	98	2	BL	1.7	Т	-	1c	
	00.1	LS 001XT	R2X	-3	105	8	BL	1.7	Т	yes	1k	
	00.5	Lono R2	R2Y	-3	107	8	Y	2.0	ST	-	1c	
	00.3	Dinero R2X	R2X	-2	97	8	IY	1.7	Т	-	-	
	00.4	TH 32004R2Y	R2Y	-2	102	2	BL	1.7	Т	-	1c	
	00.1	Prince R2X	R2X	-2	94	8	BL	1.7	т	-	1k	
	00.6	S006-M4X	R2X	-2	98	8	IY	1.9	ST	-	1c	
	00.5	S007-Y4	R2Y	-2	103	12	IY	2.0	ST	-	1c	

Effect of Use of Resistance Varieties

Scout for SCN

- Fields more than 3 years of soybean
- Get out of the truck and walk
- 30-45 days after emergence, gently lift roots with spade, dunk in bucket of water for clay, look for females using a hand lens
- Up to 21-28 before ready for harvest
- Collect soil samples and SCN test (Agvise or Soil Ecology Lab U Manitoba)

Gently obtain roots

Checking Roots

Look for small white lemon-shaped cysts

http://www.nwroc.umn.ed u/Cropping_Issues/2010/Ju ly_20/SoybeanCystNemato deScouting/index.htm

Soil Test for SCN

THREE APPROACHES to collecting soil samples.

Collect 15–20 (or more) 1-inch-diameter core samples, 8 inches deep, for every 20 acres. Mix the cores well, put the mixed soil into a soil sample bag and send it to an SCN testing lab.

Source: Laura Schmidt

Send soil samples to Agvise Laboratories

@soilecologyUMan

THANK YOU

- Nazanin Ghavami
- MB Agriculture, WGRF, MPSG, AAFC
- Dennis Lange, Laura Schmidt
- Les Mitchell, Anastasia Kubinec
- Dr. Mehrdad Madani, Terri Fairman, Fernanda Govea

UGA066

• Albert Tenuta