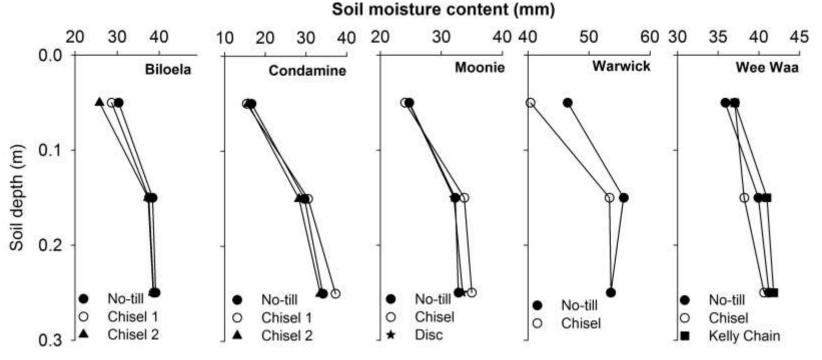
Soil Erosion: Don't just stop it, fix it!

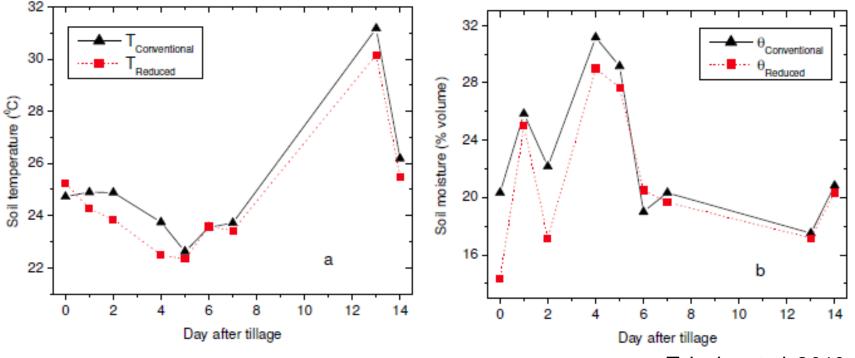
Marla Riekman, MSc, PAg, CCA Soil Management Specialist Manitoba Agriculture <u>Marla.Riekman@gov.mb.ca</u> @mbsoilsleuth

Manitoba 🐆

- Prepares the seedbed, improved seed placement and seed-soil contact
- Incorporates nutrients
- Controls weeds
- Required for crop management (i.e. hilling, harvesting of potatoes)



Can accelerate the breakdown of excessive crop residue


• Accelerates the warming and drying of soil (residue)....maybe

Yang et al. 2013, Australia

• Accelerates the warming and drying of soil (no residue)....maybe not

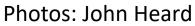
Teixeira et al. 2010, Brazil

The Downside of Tillage

- Every tillage pass can cause ¼" of soil moisture to be lost
 - Varies with soil texture, SOM, and residue cover
- Minimizing tillage can conserve valuable moisture
 - Need to weigh this value with weed control, seedbed prep, etc
 - If secondary tillage is needed for seedbed prep, try to time tillage as close to seeding as possible

The Downside of Tillage

- Accelerated Soil Erosion
- Accelerated Wind and Water Erosion

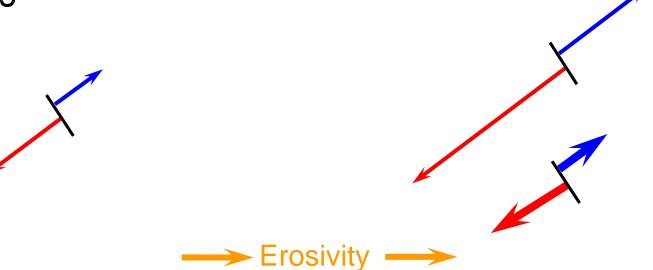

Photo: Nicole Clouson

133,347 acres canola impacted Peak wind speeds at 92 km/hr at 9 pm

Manitoba North Dakota

May 14 mid afternoon USDA Crop Explorer

Ditch deposition


Soil test Nitrate-N Lb/ac in 0-6"

- Field = 122 /b N/ac
- *Ditch soil = 1325 lb N/ac*

Tillage Erosion

 Cropping and tillage systems that employ intensive tillage (frequent, deep, fast) can cause severe tillage erosion

Tillage translocation and tillage erosivity of seeding operations

Seeding Tool	Tillage System	Tillage Translocation: Soil movement on level land			Tillage Erosivity: Tillage
		T _L (m) ª	λ ₉₀ (m) ^a	T _M (kg m⁻¹) ª	translocation variability on sloping land β (kg m ⁻¹ % ⁻¹) ^a
Air-seeder with Knives ^b	Conventional Tillage	0.10	0.69	4.4	0.1
Cultivator plus Air- seeder with Knives ^b	u	0.41	1.05	35	1.0
Air-seeder with Knives ^c	Zero-Till	0.16	0.88	8.2	0.1
Air-seeder with Sweeps ^c	"	0.51	1.33	30	1.0

^a T_L = average distance of soil movement in till-layer; λ_{90} = distance to which 90% of translocated soil is moved;

 T_{M} = mass of soil moved per m width of tillage; β = mass of soil moved per m width of tillage per % of slope grade (+ve downslope).

^b Experiments carried out in Manitoba, Canada, 2004.

^c Experiments carried out in Saskatchewan, Canada, 2006.

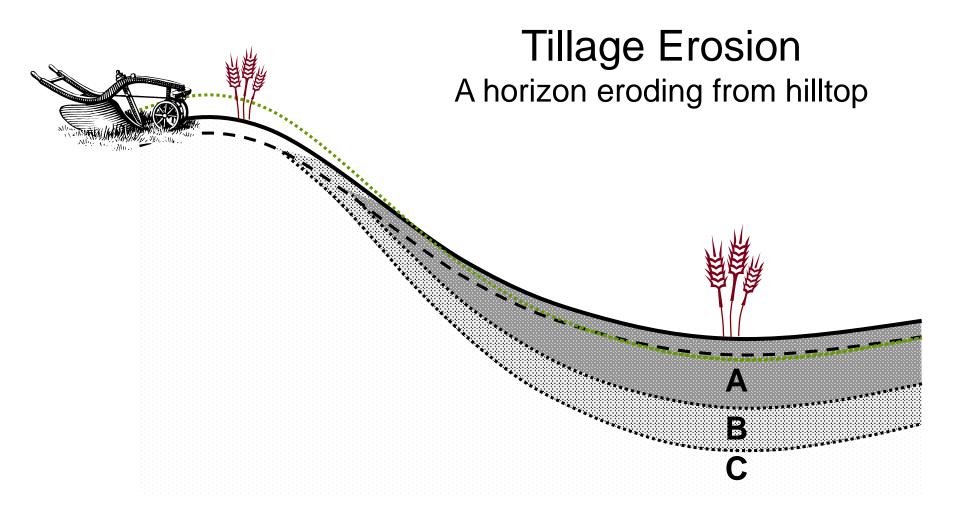
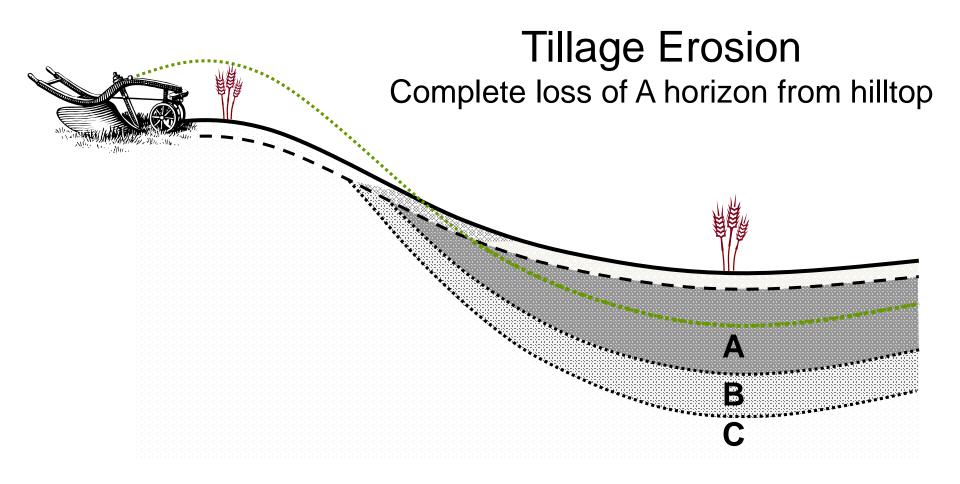
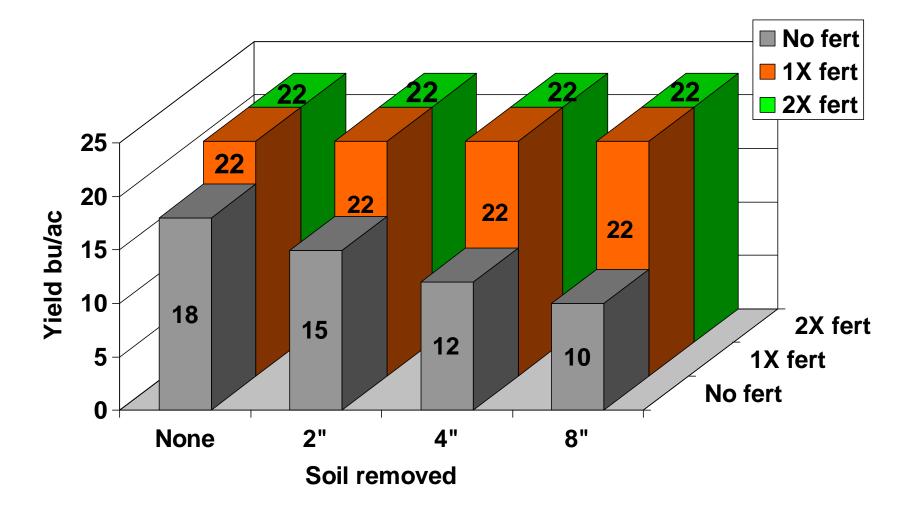
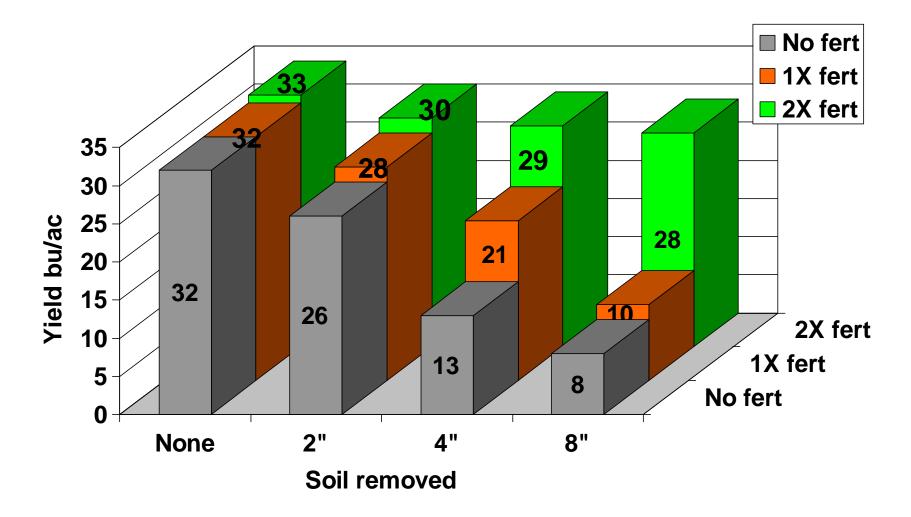



Image: David Lobb, University of Manitoba

There is a need for effective and preventative and corrective action!


Image: David Lobb, University of Manitoba


Wheat yield – Pembina clay loam

Kapoor and Shaykewich, 1990

Wheat yield – Reinland loamy fine sand

Back to Table

Kapoor and Shaykewich, 1990

Minimizing Erosion

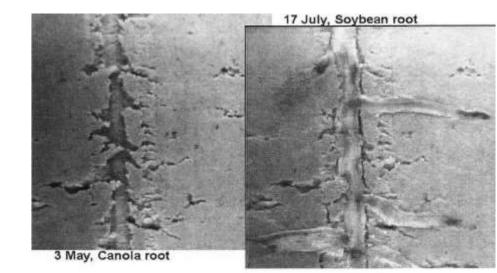
- Practices that help maintain soil structure and protect from wind/water
 - Zero Tillage
 - Cover Crops
 - Perennial Forages

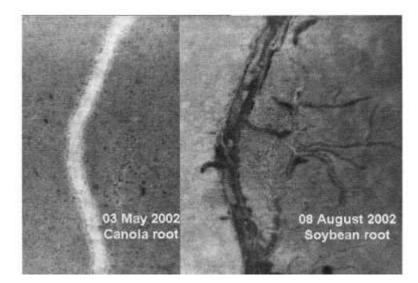
Minimizing Erosion

• Building Soil Organic Matter to improve structure

Higher SOM soils retain structure when wet

Lower SOM soils will not




Photos: J. deJong-Hughes

Reduce Tillage

- Does not disturb root channels ("biopores")
 - Roots will follow channels made by previous crops
 - Note: tillage breaks up the path of these channels
- Biopores can help soil absorb more water during wet periods

Williams and Weil (2004) SSSA Journal

How do I reduce tillage?

- Tillage passes are not the only "tillage" operations
 Fall fertilizer passes, seeding, etc all disturb soil
- True no-till may not be suitable for all operations
 - Vertical tillage, strip tillage may be used to manage residue or decrease field-wide tillage

Know your Soil

- Soils with poor internal drainage may need light tillage just before planting
 - Dries the surface enough to plant, but doesn't dry too much
- Soils with good internal drainage may be best managed with zero tillage

Know your Soil

- Cultivating a well-drained soil when wet can cause problems possibly making it a poorly drained soil
 - Compaction can collapse large pores which allow for internal drainage
 - A soil that is dry enough to till crumbles through your fingers when squeezed
 - Less prone to compaction when soil is dry...or excessively wet

About 80% of compaction happens on the FIRST PASS

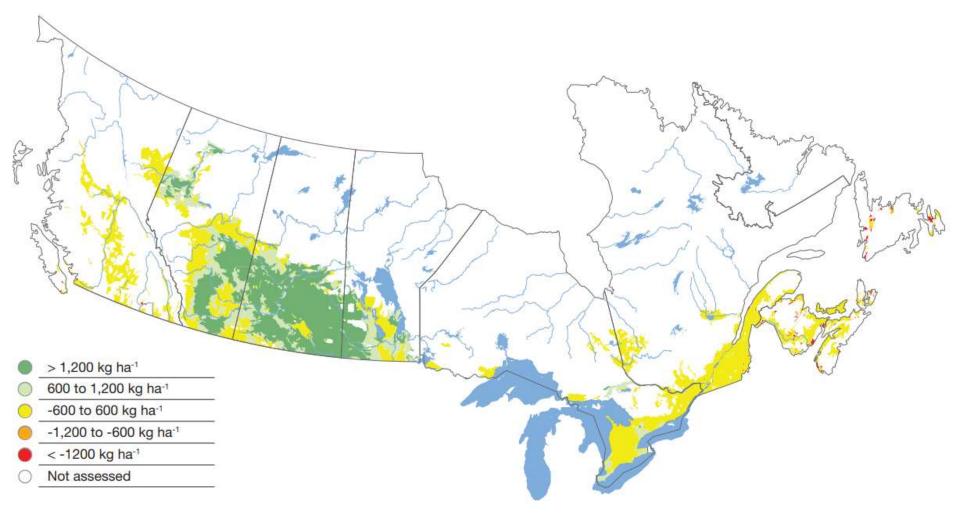
Wheel Traffic Compaction

Know your Soil

- Cultivating a well-drained soil when wet can cause problems possibly making it a poorly drained soil
 - Clods can dry out on surface, making for a poor seedbed
 - Spring of 2020 saw a lot of tillage to dry out wet soils...resulting in sidewall compaction, surface crusting, poor emergence

How do we deal with this?

Tillage to Manage Ruts


- Can help smooth out ruts from working in wet soil
- Tillage should be targeted, shallow, and preferably done when frozen

SOC change due to tillage changes (1981-2011)

Source: Environmental Sustainability of Canadian Agriculture: Agri-Environmental Indicator Report Series – Report #4

Tillage Erosion Demo Crop Diagnostic School 2016

Slope Bottom

Tandem Disc Cultivator Hi-Speed Disc

Tandem Disc

Slope Bottom

Tandem Disc Cultivator

Hi-Speed Disc

Tandem Disc

Upper Slope – Eroded Unfertilized

Upper Slope – Eroded Fertilized

Business as Usual Tillage Top of Hill; without starter P (left 2 rows), with starter P (right 2 rows)

Soil Eroded by Tillage Top of Hill; without starter P (left 2 rows), with starter P (right 2 rows)

NY ST

Can we repair eroded areas?

- Yes! Put the soil back where it came from!
- Soil-Landscape Restoration

Photos: Curtis Cavers

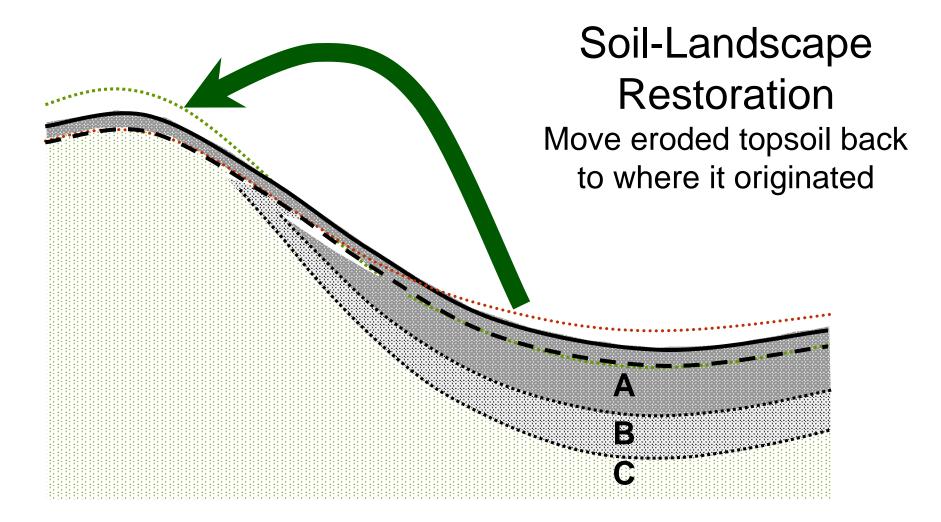
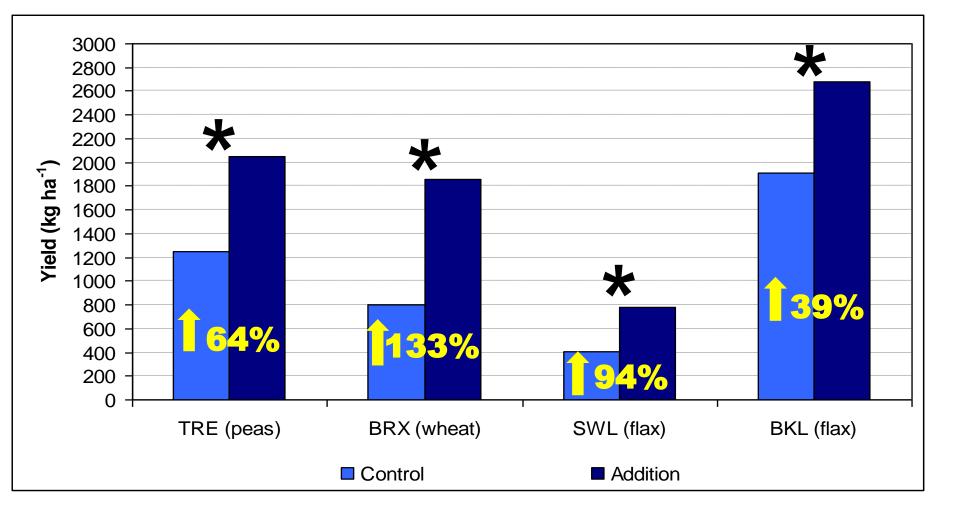


Image: David Lobb, University of Manitoba

Soil Restored Top of Hill; without starter P (left 2 rows), with starter P (right 2 rows)

Soil Removed (and placed at top of hill) Bottom of Hill; with starter P (left 2 rows), without starter P (right 2 rows)



Erosion and Restoration Demonstration

	Upper Slope			Lower slope		
	Eroded	As Is	Restored	Eroded	As Is	Restored
Nitrate-N lb/ac 0-24"	75	93	104	65	70	72
Soil P ppm	3	7	7	21	19	9
Soil K ppm	150	232	282	259	251	178
Zn ppm	0.57	1.01	1.42	2.89	2.89	2.3
рН	7.7	7.7	7.6	6.8	7	7.1
ом	3.5%	4.9%	4.9%	5.6%	5.9%	4.5%

Landscape Restoration – Soil added to knoll

Research by David Lobb, UofM Soil Science

Landscape Restoration – Soil removed

Research by David Lobb, UofM Soil Science

Current Soil-Landscape Restoration Research

- Yield increase ranged from 22, 24 and 50% on knolls where topsoil was added
 - Soybeans, canola, oats
- Yield loss ranges from 2-12% in depressions where topsoil was removed
 - Important to design removal area appropriately as ponding of water may impact yield further

Soil-Landscape Restoration

- Important to note:
 - Add 4" of topsoil to eroded knoll for maximum benefit
 - Don't remove more than 8" of topsoil from depression
 - Return on investment is 3-5 years
 - Assuming "custom" work 8 hours/day for 8-10 days/quarter
 - If no-till is adopted after, may never have to restore the landscape again
 - If tillage continues, will pay to do again in 12-15 years

Stop erosion before it starts!

- Soil-landscape restoration makes sense if you already have eroded landscapes
- But taking steps to minimize erosion can save a lot in the long run!
- Remember that <u>long-term</u> <u>sustainability</u> of the soil will require <u>long-term planning</u>

Thank you!

marla.riekman@gov.mb.ca 204-266-2027 @MBsoilsleuth