Sulfur: More than Rate and Timing: Choose the Right Source Too

Daniel Kaiser Associate Professor Department of Soil, Water and Climate

U of M Twin Cities 612-624-3482 dekaiser@umn.edu

SOURCE OF SULFUR

- Sulfur is taken up as sulfate
- Fertilizers may contain
 - Sulfate
 - Elemental Sulfur
 - Thiosulfate
- Elemental sulfur must be oxidized to sulfate
 - Depends on temperature, soil moisture, size of particles
- Soil organic sulfur needs to be mineralized
- Manure availability is not well known (~65% available?)

WHY THE INCREASE IN ELEMENTAL S PRODUCTS?

There are literally mountains of elemental S out there

https://www.businessinsider.com/thereare-mountains-of-sulfur-growing-in-theoil-sands-just-waiting-for-demand-toincrease-2012-4

 $\ensuremath{\mathbb{C}}$ 2020 Regents of the University of Minnesota. All rights reserved.

WHAT HAPPENS WHEN ELEMENTAL S IS OXIDIZED

https://sciences.adelaide.edu.au/fertiliser/system/files/med ia/documents/2020-01/factsheet-oxidation-of-elementalsulfur-in-soils.pdf

Optimum temperature ~90 °F

PARTICLE SIZE MATTERS

- Larger sized particles have less surface area for oxidation to occur
- The majority of products have particle sizes between 40 and 75 um
- Soil dispersion of the material is important
- Elemental sulfur is hydrophobic and will not dissolve in water
- Incorporation of material into the soil can limit dispersion

Figure 3. Effect of elemental S (S°) particle size on the rate of oxidation in soil at 30°C and where particles were dispersed throughout the soil (Watkinson and Blair 1993). \bigcirc - 38-75 µm diameter, \triangle - 125-150 µm, and \square - 212-250 µm.

https://sciences.adelaide.edu.au/fertiliser/system/files/media/documents/2020-01/factsheet-oxidation-of-elemental-sulfur-in-soils.pdf

SOURCE OF SULFUR'S IMPACT ON CORN YIELD

2022

Site	Control	K-Sulfate	K-MST	Tiger 90
	I	oushels per a	acre at 15.5%	
Becker	186	187	181	192
Morris	195	192	201	202
Rosemount	160c	206a	196ab	191b
Waseca	110c	159a	149b	149b

4-year average

Site	Control	K-Sulfate	K-MST	Tiger 90
	I	bushels per a	acre at 15.5%	, D
Becker	197	200	196	197
Morris	201	201	200	203
Rosemount	186b**	207a	207a	201a
Waseca	119c**	177a	174a	153b

- Source responses at Rosemount and Waseca
 - Typically Sulfate = MST > Tiger 90 > control (Tiger 90 = other S at Rosemount)
 - Year x source interaction were significant at Rosemount and Waseca
- Tiger 90 seemed to get better at providing S over time at Rosemount but not at Waseca.
 - Tiger 90 could increase yield ~ 2/3 that of sulfate or MST

DISPERSION OF ELEMENTAL S WITHIN SOILS

(a) Soluble nutrients (N, P) diffuse out and granule collapses. Not all S^o particles are exposed to the soil (some surface is "masked") – oxidation slow

(b) Soluble nutrients (N, P) diffuse out and granule collapses. Because of the lower S^o content, the surface of all particles is exposed— oxidation fast

https://sciences.adelaide.edu.au/fertiliser/system/files/media/documents/2020-01/factsheet-oxidation-of-elemental-sulfur-in-soils.pdf

DISPERSION OF ELEMENTAL S WITHIN SOILS

Reducing the amount of elemental S in a granule can greatly increase the potential for oxidation.

(a) Soluble nutrients (N, P) diffuse out and granule collapses. Not all S^o particles are exposed to the soil (some surface is "masked") – oxidation slow

00000

(b) Soluble nutrients (N, P) diffuse out and granule collapses. Because of the lower S^o content, the surface of all particles is exposed— oxidation fast

https://sciences.adelaide.edu.au/fertiliser/system/files/media/documents/2020-01/factsheet-oxidation-of-elemental-sulfur-in-soils.pdf

© 2020 Regents of the University of Minnesota. All rights reserved.

FORAGE YIELD RESPONSE TO S

ROSEMOUNT LTS ALFALFA TRIAL

2020-2021: 2 cuttings

Sulfur	Source of Sulfur			
Rate	Control	K ₂ SO ₄	K-MST	Rate AVG
lb/ac	Alfalfa for	Alfalfa forage Yield - Ibs per acre		
10	5944	6859	6624	6476
20	5710	7518	7076	6768
30	5981	6817	6752	6517
Source Avg. ¹	5878b	7065a	6818a	

+1064 lbs Forage with S

@\$150/ton returns ~ \$80/ac

@\$0.50/lb S and assuming \$6/ac spreading

10 lbs S returned ~ \$69/ac

2021-22: 4 cuttings

Sulfur	Source of Sulfur			
Rate	Control	K ₂ SO ₄	K-MST	Rate AVG
lb/ac	Alfalfa for	Alfalfa forage Yield - Ibs per acre		
10	12751	16047	15703	14833b
20	13328	16648	16572	15516ab
30	13383	16951	16951	15803a
Source Avg. ¹	13154b	16548a	16450a	

+3345 lbs Forage with S @\$150/ton returns ~ \$251/ac @\$0.50/lb S and assuming \$6/ac spreading 20 lbs S returned ~ \$235/ac

10-20 lbs S returned ~ \$304/ac over 2 years

University of Minnesota | Extension

DRY FORAGE YIELD BROKEN DOWN BY SULFUR APPLICATION LTS ALFALFA TRIAL

Time = <0.001S Source = 0.24Time x Source = 0.05**Rosemount** Time = <0.001S Source = 0.05Time x Source <0.01**Waseca** Time = <0.001S Source < 0.001Time x Source <0.001

P > F

Becker

Units are given as Micrograms S 10cm⁻² 10cm⁻¹

Data are collected from the 10 lb S application rates

UNIVERSITY OF MINNESOTA | EXTENSION

© 2020 Regents of the University of Minnesota. All rights reserved.

ARE ALL ELEMENTAL S PRODUCTS EQUAL?

- Concentration of elemental S in the material is important when it comes to dispersion of material within the soil
- Particle size dictates oxidation rate after dispersion (Degryse et al., 2016)
 - Tiger 90 Ranges from 30-130 um, estimated median 60 um
 - Microessentials S10/S15 Ranges 25-100 um, estimated median 56 um
 - Microessentials also contains ammonium sulfate (AMS)
 - MST (Sulvaris/Nutrien) ~ Ranges from 1-15 um, granular products average 15 um
- For co-granulated products the carrier material can also impact availablity due to differences in dissolution of the product in the soil
 - P based fertilizers like MAP or DAP do not dissolve quickly

CORN GROWTH AND GREENNESS

- No consistent impact of S on plant greenness at Becker and Morris in 2020
- MST was generally not as effective as sulfate in 2019
 - More comparable to sulfate in 2020
- Rosemount results are similar to Waseca results shown

SITY OF MINNESOTA | EXTENSION

Crop Circle NDRE (V6)

FALL VERSUS SPRING APPLICATION

Fall 10 lb S/ac 169a Spring 163b 200 а Corn Grain Yield (bu/ac) ab abc abcd bcd cde 150 100 50 Λ AMS AMS/ Tiger90 SulfurMax SulfurMax No Sulfur Tiger90 No Inc. 147c 178a 171ab 165ab 173ab 162b

Rosemount/Waseca 2022

- The sulfate anion will leach in soils
- Sulfate tends to leach at a slower rate than nitrate
- Elemental S is typically what I find most growers go to for fall application
 - Availability is an issue
- Data isn't always straightforward on effects of timing
 - High application rates make timing less critical even with sulfate
- Products like Tiger 90 may be better not incorporated in the fall
 - P and K are better incorporated if you can

RATE OF SULFUR'S IMPACT ON CORN YIELD

2022

Site 5 lbs S		10 lbs S	20 lbs S	
	bushel	bushels per acre at 15.5%		
Becker	177	192	190	
Morris	200	202	190	
Rosemount	181b	179b	205a	
Waseca	133b	142ab	150a	

4-year average

Site	5 lbs S	10 lbs S	20 lbs S
	bushel	s per acre at	15.5%
Becker	189b	200a	202a
Morris	201	201	202
Rosemount	197b@	195b	209a
Waseca	147b@**	157a	162a

• Rate of sulfur application has consistently differed at Becker and Waseca

UNIVERSITY OF MINNESOTA | EXTENSION

- Rate x year interaction was significant at Waseca less S was needed in early years compared to later.
- Rate x source interaction was significant at Rosemount and Waseca

PUTTING IT ALL TOGETHER

- The availability of elemental S from Tiger 90 can range from 25-100% the year it is applied
 - Higher clay soils present a greater problem for oxidation of elemental S
- Elemental sulfur in co-granulated products appear to have similar effectiveness as sulfate
 - Potassium and ammonium sulfate have similar availabilities
 - Gypsum products can vary in solubility but most of the time they should be 100% available
- A product like Tiger 90 needs some additional thought on how to manage the product
 - If it takes 4x the product, is it economically feasible?
- Low rates of sulfate applied in the spring can be highly effective at increasing corn grain yield

UNIVERSITY OF MINNESOTA | EXTENSION

ELEMENTAL S OXIDATION – LONG TERM

ELEMENTAL S STRATEGIES FOR USE

- Elemental S must be broken down into smaller particles before it can be effectively oxidized
- Likely more effective to not incorporate sulfur+bentonite products if applying in the fall to allow for the bentonite in the product to absorb water, swell, and disperse the elemental S
 - Surface application without incorporation is not ideal for fall fertilizer application, particularly on sloping ground or situations where water is more likely to move rapidly off a field
- Oxidation of elemental S in co-granulated products is limited by the particle size of the elemental S and will not be greatly impacted whether the material is incorporated or not.

THIOSULFATE IS PART ELEMENTAL S BUT IT IS **NOT THE SAME AS GRANULAR FERTILIZER**

- Sulfate ions

Sulfate Ion is plant available

© 2020 Regents of the University of Minnesota. All rights reserved.

CORN GRAIN YIELD DATA BY SOIL ORGANIC MATTER LEVEL – CONTINUOUS CORN

	Low (<4.0% SOM)			High (>4.0% SOM)				
S Rate	AMS-Br	ATS-Br	ATS-Ba	Avg.‡	AMS-Br	ATS-Br	ATS-Ba	Avg.‡
-lb S/ac-	cbu/acbu/ac							
0	227	226	229	227b	212	211	209	211c
2.5	230	231	221	227b	214	213	216	215bc
5.0	231	228	232	230ab	221	215	217	217ab
10.0	231	233	231	231ab	215	221	212	216b
20.0	231	237	228	232a	224	216	223	221a
Avg.‡	230ab	231a	228b		217	215	216	

† Sulfur source: ATS-Ba, Ammonium thiosulfate banded; ATS-Br, ammonium thiosulfate broadcast; AMS-Br, ammonium sulfate broadcast.

 \pm Avg., treatment mean; within rows and columns, numbers followed by the same letter are not significantly different at the P<0.05 probability level.

ACIDIFICATION CAN OCCUR FOLLOWING SULFUR APPLICATION

Table I. Lime required to neutralize the soil acidity produced by fertilizers if all ammonium-N is converted to nitrate-N.

Nitrogen source	Composition	Lime required (Ib CaCO ₃ /Ib N)
Anhydrous ammonia	82-0-0	1.8
Urea	46-0-0	1.8
Ammonium nitrate	34-0-0	1.8
Ammonium sulfate	21-0-0-24	5.4
Monoammonium phosphate	10-52-0	5.4
Diammonium phosphate	18-46-0	3.6
Triple super phosphate	0-46-0	0.0
Adapte	d from Havlin et al	1999

Adapted from Havlin et al., 1999.

https://extensionpublications.unl.edu/assets/html/g1503/build/g1503.htm

Sulfur sources

- 3 lb CaCo3 / 1 lb S
- Thiosulfate is less than elemental S
- Calcium and potassium sulfate are neutral salts and will not affect pH
- With more S being applied soil pH should be monitored and lime application may be required
 - Strongly buffered high pH soils should not be impacted

DO YOU NEED TO APPLY SULFUR IF YOU ARE APPLYING MAP OR DAP?

- Sulfuric acid is used to treat rock phosphate in order to create P fertilizer and can leave S as an impurity in MAP or DAP
- MAP and DAP will contain roughly 1-3% total S which is not accounted for on the fertilizer analysis
 - This sulfur is available
 - Liquid fertilizer vary considerably in S contamination
 - Low salt sources have less S

Nitrogen source	Composition	Total S content (%)
Triple Superphosphate	0-46-0	1.8, 1.9
MAP	10-52-0	1.8, 2.2, 1.8
DAP	18-46-0	1.2, 1.5
Liquid	3-18-18	0.009, 0.01
Liquid	6-24-6	0.06, 0.8
Liquid	10-34-0	0.84
Liquid	9-18-9	0.05

Total Sulfur content of Some P Fertilizers

Total S in solid fertilizer tested using dry combustion analysis Total S in liquid fertilizers measured directly via ICP Source: Kaiser 2022

UNIVERSITY OF MINNESOTA | EXTENSION

P-K-S Study Red Wing, MN 6/23/15

the bulac

Agricultural Fertilizer Research & Education Council

235/bu/ac. . .

WRAPPING UP

- The more MAP or DAP applied the less likely you need to be worried about applying high rates of sulfur
 - Removal rates of P will likely apply around 5 lbs of S due to S impurities
- Elemental sulfur as Tiger 90 will likely be less effective for high clay soils
 Even long-term I doubt you will see much more than 25-33% of the product oxidized
- The co-granulated products seem to be a good choice if a grower wants to use elemental S, but at what cost?
 - Stick to the lower end of the suggested S application rate window (~10 lbs)
- ATS is a good option as well
- The good news is there are several options when applying S!

Key Growth Stages for Sulfur Uptake in Corn

Daniel Kaiser University of Minnesota 612-624-3482 <u>dekaiser@umn.edu</u> http://z.umn.edu/nutrientmgmt