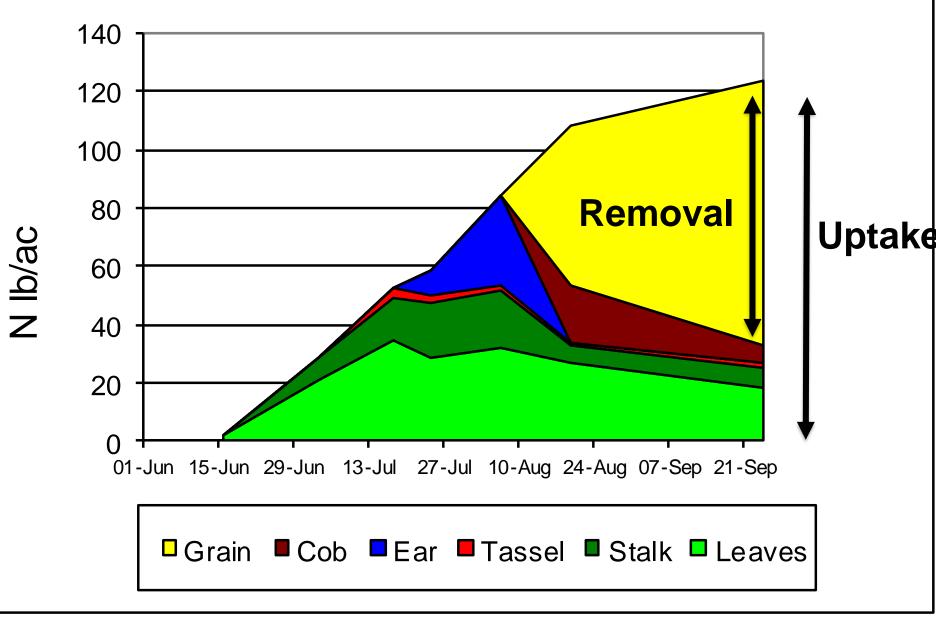
"Crop Nutrient Uptake and Removal: Are all Regions the Same?"

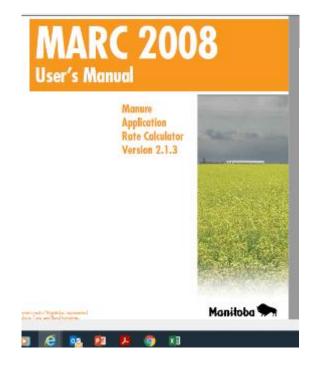
> John Heard AgVise seminar March 2022

Crop uptake and <u>removal</u>


What do we use this information for?

Does it need to be updated? Does it change from area to area?

Can nutrient concentration be diagnostic of under fertilized crops?



Corn Nitrogen Uptake

Carman, 1993. 146 bu/ac corn with 125 lb N.

Manure management planning (and regulation of rates)

	Crop	Example Target Yield	Ave Removal N	Ave Removal P205	
Ν	Wheat (Spring)	40 bu/acre	1.50 lb/bu	0.59 lb/bu	1
١	Wheat (Winter)	75 bu/acre	1.04 lb/bu	0.51 lb/bu	1
1	Barley (Grain)	80 bu/acre	0.97 lb/bu	0.42 lb/bu	1
Ī	Oats	100 bu/acre	0.62 lb/bu	0.26 lb/bu	1
1	Rye	55 bu/acre	1.06 lb/bu	0.45 lb/bu	1
1	Corn (Grain)	100 bu/acre	0.97 lb/bu	0.44 lb/bu	1
1	Canola	35 bu/acre	1.93 lb/bu	1.04 lb/bu	1
1	Flax	24 bu/acre	2.13 lb/bu	0.65 lb/bu	1
1	Sunflowers	22 cwt/acre	2.80 lb/cwt	1.10 lb/cwt	1
1	Alfalfa	5 tons/acre	58.0 lb/ton	13.8 lb/ton	1
1	Grass Hay	3 tons/acre	34.2 lb/ton	10.0 lb/ton	1
1	Corn (Silage)	5 dry tons/acre	31.2 lb/ton	12.7 lb/ton	1
1	Barley (Silage)	4.5 tons/acre	34.4 lb/ton	11.8 lb/ton	1
	Souboono	25 bulaasa	2 97 lb /bu	0.94 lb/bu	1

6.2.4 The Fertilizer Screen (4/8)

https://www.gov.mb.ca/agriculture/environment/nutrientmanagement/marc.html#Whats_in_MARC_2008_

Effectiveness of novel products

Effectiveness of Using Low Rates of Plant Nutrients

Devid W. Prace et. N2011 Extension fact Interno Epectator. U.S. Department of Apriculture-Neth Central Extension and Research Activity-105 Committee on Nonconventional Amontments and Additives.

NOERA-103 Committee, 2000 Carl Rosen, Unkently of Ministeds, administrative advisor John Seveyer, twis State Unkently Dorhar Rutz-Disc, Karses State University Kurt Statino, McKriger State University Natifice Plank, University of Missouri Mathew Faark, University of Missouri David M. Razen, Narih David State University Emerson Natifiger (Intivity), University of Missouri Ed Lands, This Onlie State University David M. Razen, University of Missouri Ed Lands, This Onlie State University David M. Razen, University of Missouri Bigen Materiae, University of Materiada Bigen Materiae, University of Nationala James Camberlio, Princip University

ATDOT 1

"Low rates" roles to supplemental crop numlerits added at rease much less than crop nomewill or much less than rates recommended by lend-grant invessity soil testily specialests. Low rates of crop nutrients sometimes are applied through the use of furtilizens with a law nutrient analysis (1.5.1) or by application of low rates of higher analysis forsizens (0.5.5.0).

Also, nontraditional products may promote low lotal plant mineral natrient mass through the application of low-analysis products or low rates of higher analysis products, with or without alternative additions to replace or anhance lentilizer nutrients. In each case, producers should give canaly consideration to the potential for optimal orgo response lyield or other desired outcome) that is based on university measureh conducted in similar soils or geographic regions.

Some farmers may choose to use low rates of fortilizer to reduce input costs. When not toot levals of numerics as high end vary high, nutriest additions are generally not recommended or are recommended at lower than crop numeral rates. However, if noil test levels are vary low or too, rates mare than coop numeral other are recommended, particularly the transdom times and test.

Decisions on rate reductions need to be considered in relation to potential yield response and method of application that may enhance response, compand with traditional broadcesting. Foliar fartilizer or fartifizer applied with the seed generally site are applied at low mate due to constraints multised to plant itsue. Thus if and seed generation leading salety. Although low rates of nutrients may be appropriate to apply at carries in times, carried uncomplete made of all latters that may influence short-term and long-term orp yield, maintenance of soil tests and potential environmental impacts. Fourteen essential miniant intraints are received for concerns that may influence. The reason for fartilization is for the farmer to be probable in the current season and to position the soil for continued profitability into the fature. This is important because many networks are supplied at adequate levels naturally from the soil and are corrected at such law rates that forilization inst seached.

Several asamples are microsoftients or nations, particularly calcium (Ca) and (Mg), which are replaced with limiting lowpH sole. In other cases, nutrient numoral is so large that furtilization is required in the long term to maintain the sol nutrient resource.

Manitoba

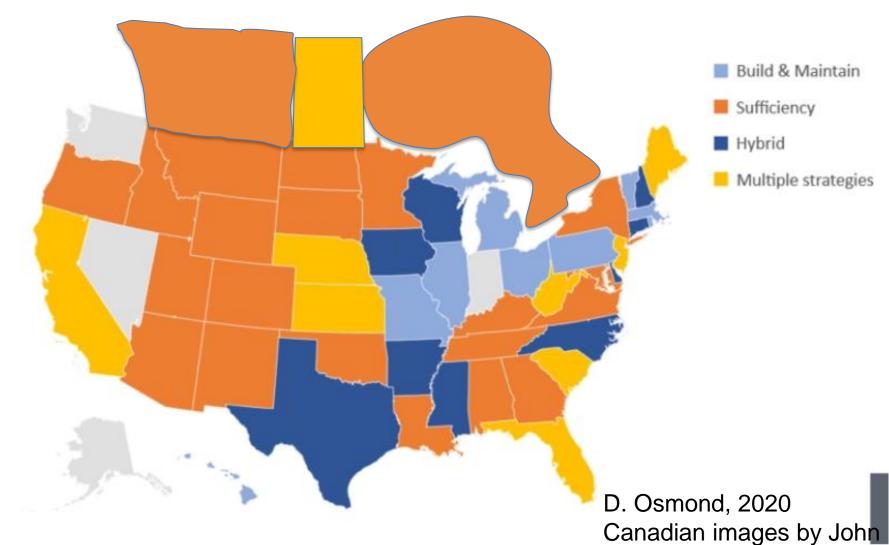
Phino examples are phosphores (P) and potentiam (k). For some nutriants, the soil supply of the crop available form is so fails disclosery always cours and needs tariflustion for optimal supply, typically a specific crop nutrient interaction with oration reiscourtients.

Table 1. Approximate concentrations of minoral elements in arrays grown in the North Central Region at harvest. Considerable variation accurs in a grap in elemental concentration.

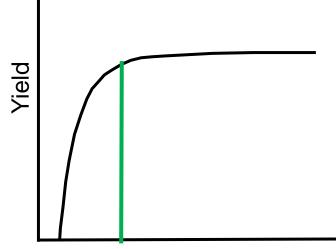
	Concentration of nutrients in crops and crop compressis at harvest												
Grap, and part. X maintant	-	P.A.	ų	8 1	Ge Z	Mg	0 1	B	Cu ppm	fe ppm	Ma	h	Ho
Atalis hay	2.25	0.6	2.26	0.2	1.8	0.27	0.5	76	75	100	66	64	0.11
Darley, grain	1.0	0.0	0.5	0.15	0.05	0.10	0.15	21	96	- 190	10	32	0.21
stow	0.75	0.25	1.50	0.20	0.40	0.10	9.25	25	50	25	18	25	0.11
Canola seed	3.1	0.5	1.0	0.45	0.29	0.16	0.08	75	25	50	20	15	0.75
straw	1.0	6.5	2.0	0.0	0.6	0.10	0.00	25	90	640	20	10	0.1
Chickpeas	3.4	0.35	2.0	0.25	0.10	0.11	0.02	30	95	70	35	35	0.50
Cort grain, 15%	15	0.57	0.39	0.11	0.04	0.01	0.05	70	25	36	26	18	0.0
devar 1916	1.0	0.24	1.2	0.10	0.45	0.50	0.06	22	75	14	75	20	0.90
Corn sliage, 65%	1.8	0.15	1.0	0.2	0.25	0.22	0.04	30	50	25	25	25	0.25
City beans	4.0	0.07	2.1	80	0.12	0.20	0.000	50	20	20	14	16	0.79
Field pas grain	9.8	0.90	1.0	0.40	0.95	0.10	0.06	70	15	60	10	90	0.00
strav	1.2	0.00	1.3	0.45	0.15	0.10		57	23	30		15	0.30
Plax grain	3.2	0.6	1.0	0.35	0.25	0.45	_	16	12	50	30	40	
straw	12	0.90	0.80	0.15	6.3	0.2		80	- 56		42	12	
Lentil grain	4.0	EI.40	1.0	0.90	0.10	0.10		10	. 10	185	15	45	0.1
ilisw	14	0.1	0.55	0.30	0.10	0.04		5	75	.05	20	45	0.05
Clat grain	1.8	0.40	0.80	0.15	6.10	0.10	0.08	20	-46	70	50	45	0.40
utrav	33.0	0.23	2.1	0.23	0.50	0.15		25	60				0.10
Palaki tubers	0.43	0.13	0.56	0.03	0.015	0.03	_	徑	20	26	1.1	15	
VIDAS	2.2	0.60	7.2	0.22	0.18	0.10		28		55	43	28	200
Rys, careal	2.4	6.70	0.90	0.15	6.05	16	0.05	15	4	60	30	40	0.05
Sorghum grain	1.0	0.00	0.50	0.90	9.00	0.06			6	- 92			
skover	1.4	0.2	1.5	0.97						- 30		66	
Stybaane 19%	5.6	3.7	2.0	0.90	0.27	0.10	0.02	28	. 8	90	22	60	0.14
straw 10%	1.3	0.17	1.6	0,10	0.10	0.05	0.95	30	90	80	20	10	0.3
Sugarbeet sols	0.26	0.03	0.01	0.06	0.04	0.04	0.008	3	51	90	13	10	0.15
Boot tops	17	0.90	1.6	0.06	0.16	0.00	0.02	35	0.60	90	20	12	0.5
Gunikowats	6.0	10	3.0	0.15	0.50	0.90		10	20	30	30	36	
Sunkwar staver	0.5	0.22	2.0	0.25	0.30	0.13		50	5.0	10	5	28	1.1.1
wheel grain 12%	22	0.80	0.44	0.12	0.06	0.13	0.08	55	2.8	- 190	- 50	. 55	0.8
almay 10%	0.44	0.00	1.2	0.06	0.04	0.14	0.14	11	3	80	14	20	0.11

N-ntengan, P₂O₂-phosphare, K₂O-potesti: 8- surfur: Ca-calcium: Mg-magnesium; C3-otilotide, B.-Boron; Ca-copper: Pa-Intri Mn-manganese, Zh-zht; Mo-molybdamum; Clanks Indicase no data available.

2 (Discleance of Deng Law Rate of Part Nichards) www.ndu.add/extension


Often it is simple mathematics https://www.ag.ndsu.edu/publications/crops/effectiveness-of-using-low-ratesof-plant-nutrients

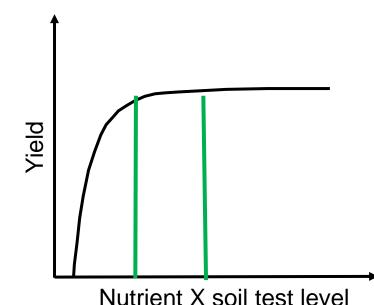
Considering soil depletion, maintenance or building


	K19 - fr			Aignment	13	Number 5				Stytes		
A		С	D	E	F	G	Н	T	1	К	1	М
			_					1	J	ĸ	L	IVI
1	1 Phosphorus Balance Calculation for a Rotation (Version 4 - October 1, 2014)											
		Typical	Yield	Р		noved*	Annual				ount for n	
	Crop	Yield	Units		-		Balance	Ŀ	removed v	when strav	w or chaff i	s
3					(lb P	2O5/ac)		1	removed o	or burned		
	HR Spring wheat	60	bu/ac	30	0.59	35	-5					
5	Winter wheat	75	bu/ac	30	0.51	38	-8					
6	Barley		bu/ac		0.42	0	0					
7	Oats		bu/ac		0.26	0	0					
8	Canola	40	bu/ac	20	1.04	42	-22					
9	Soybeans	40	bu/ac	10	0.84	34	-24					
10	Peas		bu/ac		0.69	0	0					
11	Flax		bu/ac		0.65	0	0					
12	Corn (grain)		bu/ac		0.44	0	0					
13	Other**				0.00	0	0					
	Total for Rotation			90		149	-59					
16	Fill in any of the blue	cells for	typical re	otation, vi	elds, and	P appl'n						
17	*P removal figures a						ide.					
18	**For nutrient remo					-						
19												
20												
 H 4 F F	Interactive P balance workshe	et / Nutrient	removal table	/9/							•	
Ready										-		

Simple spreadsheet to show impact of fertilization strategies over the rotation. https://www.gov.mb.ca/agriculture/crops/soil-fertility/phosphorus-balancecalculator-for-a-rotation.html

2020 National Survey: Fertilizer Recommendation Philosophy for P and K

Sufficiency versus Building/Maintenance


Sufficiency

- Apply only what is sufficient to meet crop demands
- Inputs match outputs
- Soil nutrient levels remain in a responsive range

Nutrient X soil test level

Building/maintenance

- Apply more than what is needed for the immediate crop
- Build the nutrient reserve
- Soil nutrient levels remain in a medium to high range

(Target STP – Current STP) X BC + CR

Years to Build

- Example 2 for 60 bu/ac wheat, current STP = 5 ppm and 5 years to build:
- Target STP (15 ppm)
- Crop removal (CR) = yield x P concentration
- Typical P buffering capacity (BC) by soil characteristics (assuming 25 lb P₂O₅ /ac to increase 1 ppm STP)

$\frac{(15-5) \times 25}{5} + 34 = \frac{(250)}{5} + 34 = 84 \text{ lb } P_2 O_5 / \text{ac}$

2001 – based on same data +/- 10%

oved by Crops	Plant Nutrian	1.00 9	4 1 by Cropper that of the number the	Frant Food Uptoble met uppaka vieren son bandu on national concentrations on dy veot national canaditations. Fuotrant methods wan yere wiere enourien indod trant die soo	
Grains Wheat seed	60 23 25 9 32 32	55 72	a Crob	are not able to ever ani. For any outpents from the ani. Example in	
10 DUIM Total	85 52 62 26 5	17 64	3 Dive	add labit pixe addes the pixe amount	
Winter Wheat seed Straw	4 15 31 1 67 31	75	7	op uptiles of numierra is rearricities including	
Barley SUS	28	4 68 9 93	12 3	toos noted below.	
BO DUIA TO	tal 100	26 18 15 127	5 8 13	- love soli temperatures	
Dats st	rsvv 45 otal 106	41 20	5	- matrices (BMPa)	ļ
RUR	eed 59 straw 33	26 11 21 13 46 13	7	which optimize productionmental protection	
sia sia sia sia 55 bulA sia 55 bulA sia 55 bulA	Total 97 seed 97	44 1	28 8 01 15 129	Source include: The detail	-
ges Com 100 bulA 6272 kg/ha	stover 153 Total 153	63	21 1:	Service fervices approximate	
2 tol Oilseeds	seed 68	41 17 58		conservation, and were conservation, and were	
Clove Canola 35 bu/A 4 ton 1960 kp/ha	straw 112 Total 51	15	15 20	6 week managed tentilizer program, b	1 1 1
a ton	seed 14 straw 65 Total 65		35	4 noice your crop process and sustained	1
1492 kp/me	seed 5	1 10	25	4 4 8 Consult your Sertilizer supplier to consult your sertilizer supplier to information on nutrient manageme	rd.
Suntlower 50 bu/A 2240 kg/hg		4 26		Berlas	2
LI Prove	Compiled by the			jillion	
	WESTERN CAN FERTILIZER A tram research an	HADA SSOCIATION	rmation		

NUTRIENT UPTAKE AND REMOVAL BY FIELD CROPS

The ranges in nutrient uptake ¹ and removal² values given in this chart are general estimates. They are based on typical nutrient concentrations and yields for good growing conditions in western Canada. Actual uptake and removal will vary with crop yield, crop variety, soil fertility and from year to year. Accurate removal values can only be determined by laboratory analysis. Crop uptake of nutrients is affected by soil and climatic conditions. Low soil moisture, poor aeration due to compaction or excessive moisture, low soil temperatures,

17/018

ot a light wild

WESTERN CANADA 2001

high lime in the root zone, nutrient imbalances, and other factors may restrict uptake of plant nutrients. Crop fertility requirements will differ from these nutrient removal values.

Crops are not able to extract all available plant nutrients from the soil, and fertilizers are not 100 percent efficient. For any given yield, the total nutrient supply in the soil (soil plus added fertilizer) will be somewhat greater than the amount removed by the crop. The best way to determine fertilizer requirements is regular soil analysis.

Pounds per Acre

				1 M 1 M 1 M 1	Constant of the second
Grains		N	P,O,	к,0	s
Spring Wheat	uptake'	76 - 93	29 - 35	65 - 80	8 - 10
40 bu/A (2690 kg/ha)	removal ²	54 - 66	21 - 26	16 - 19	4 - 5
Winter Wheat	uptake	61 - 74	27 - 34	64 - 78	9 - 11
50 bu/A (3360 kg/ha)	removal	47 - 57	23 - 28	15 - 19	6 - 8
Barley	uptake	100 - 122	40 - 49	96 - 117	12 - 14
80 bu/A (4300 kg/ha)	removal	70 - 85	30 - 37	23 - 28	6 - 8
Oats	uptake	96 - 117	36 - 45	131 - 160	12 - 14
100 bu/A (3584 kg/ha)	removal	55 - 68	23 - 28	17 - 20	4 - 5
Rye	uptake	83 - 101	41 - 51	117 - 144	14 - 17
55 bu/A (3450 kg/ha)	removal	53 - 64	22 - 27	18 - 22	4 - 5

Manitoba 🐆

NUTRIENT UPTAKE AND REMOVAL BY FIELD CROPS

MANN KI LA

The ranges in nutrient uptake¹ and removal² values given in this chart are general estimates. They are based on typical nutrient concentrations and yields for good growing conditions in

western Canada. Actual uptake and removal will vary with crop yield, crop variety, soil fertility and from year to year. Accurate removal values can only be determined by laboratory analysis.

Crop uptake of nutrients is affected by soil and climatic conditions. Low soil moisture, poor aeration due to compaction or excessive moisture, low soil temperatures,

WESTERN CANADA 2001

Pounds per Acre

high lime in the root zone, nutrient imbalances, and other factors may restrict uptake of plant nutrients.

Crop fertility requirements will differ from these nutrient removal values. Crops are not able to extract all

available plant nutrients from the soil, and fertilizers are not 100 percent efficient. For any given yield, the total nutrient supply in the soil (soil plus added fertilizer) will be somewhat greater than the amount removed by the crop. The best way to determine fertilizer requirements is regular soil analysis.

i o unu	5 PCI /			
	N	P203	K,O	s
uptake*	76 - 93	29 - 35	65 - 80	8 - 10
removal*	54 - 66	21 - 26	16 - 19	4 - 5
uptake	61 - 74	27 - 34	64 - 78	9 - 11
removal	47 - 57	23 - 28	15 - 19	6 - 8
uptake	100 - 122	40 - 49	96 - 117	12 - 14
removal	70 - 85	30 - 37	23 - 28	6 - 8
uptake	96 - 117	36 - 45	131 - 160	12 - 14
removal	55 - 68	23 - 28	17 - 20	4 - 5
uptake	83 - 101	41 - 51	117 - 144	14 - 17
removal	53 - 64	22 - 27	18 - 22	4 - 5
uptake	138 - 168	57 - 69	116 - 141	13 - 16
removal	87 - 107	39 - 48	25 - 30	6 - 7
	N	P,0,	к,о	s
uptake	100 - 123	46 - 57	73 - 89	17 - 21
removal	61 - 74	33 - 40	16 - 20	10 - 12
uptake	62 - 76	18 - 22	39 - 48	12 - 15
removal	46 - 56	14 - 17	13 - 16	5 - 6
	uptake " removal" uptake removal uptake removal uptake removal uptake removal	N uptake ⁺ 76 - 93 removal ³ 54 - 66 uptake 61 - 74 removal 47 - 57 uptake 100 - 122 removal 70 - 85 uptake 96 - 117 removal 55 - 68 uptake 83 - 101 removal 53 - 64 uptake 138 - 168 removal 87 - 107 N uptake 100 - 123 removal 61 - 74 uptake 62 - 76	uptake 76 - 93 29 - 35 removal ¹ 54 - 66 21 - 26 uptake 61 - 74 27 - 34 removal 47 - 57 23 - 28 uptake 100 - 122 40 - 49 removal 70 - 85 30 - 37 uptake 96 - 117 36 - 45 removal 55 - 68 23 - 28 uptake 96 - 117 36 - 45 removal 53 - 64 22 - 27 uptake 83 - 101 41 - 51 removal 53 - 64 22 - 27 uptake 87 - 107 39 - 48 optake 87 - 107 39 - 48 uptake 100 - 123 46 - 57 removal 100 - 123 46 - 57 uptake 100 - 123 46 - 57 uptake 62 - 76 18 - 22	N P_2O_3 K_1O uptake 1 76 - 93 29 - 35 65 - 80 removal1 54 - 66 21 - 26 16 - 19 uptake 61 - 74 27 - 34 64 - 78 removal 47 - 57 23 - 28 15 - 19 uptake 100 - 122 40 - 49 96 - 117 removal 70 - 85 30 - 37 23 - 28 uptake 96 - 117 36 - 45 131 - 160 removal 55 - 68 23 - 28 17 - 20 uptake 96 - 117 36 - 45 131 - 160 removal 53 - 64 22 - 27 18 - 22 uptake 83 - 101 41 - 51 117 - 144 removal 53 - 64 22 - 27 18 - 22 uptake 138 - 168 57 - 69 116 - 141 removal 87 - 107 39 - 48 25 - 30 N P_2O_5 K_2O uptake 100 - 123 46 - 57 73 - 89 removal 61 - 74 <

Western Canada

Where did data come from? Research plots?

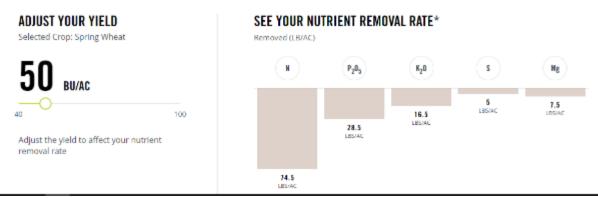
Older varieties? Open pollinated canola. Production has changed:

- Less tillage
- More pesticide use (fungicide)
- Earlier seeding

Table 4.1 Total nutrient uptake* by selected crops (Last modified: May 2014).

-			
	Barley	Argentina	S
-			7.0
	Bermudagrass	USA	0.2
	Canola	China	
	Chickpea	India	1.4
	Corn	USA	7.8
T			
	Soybean	USA	8.6
t	Sugar beet	China	1.3
+			
	Sugarcane	China	
t	Current	Andreaktion	0.50
	Sunflower	Argentina	
T	Tobacco	China	-
e +			
	-		

* Total nutrient uptake refers to the quantity of nutrient accumulated in the above ground portion, and harvested portions, of the plant by the time of sampling, usually physiological maturity or when uptake is at its maximum.



NUTRIENT REMOVAL

What's your harvest removing from the soil?

* N, P₂O₅, K₂O, and S removal coefficients derived from the IPNI Nutrient Removal Calculator as of Jan. 2018 (http://www.ipni.net/article/IPNI-3346). Mg removal coefficients derived from Alabama Extension: ANR-449 (1999), CEI (2001), IPNI (2008), North Carolina: AC-430-16 (1901) and other independent sources.

Nutrient removal values may vary regionally depending on growing conditions. Use locally available data whenever possible. Crop nutrient removal and soil test considerations should be made for proper nutrient recommendations.

https://www.cropnutrition.com/nutrient-management/nutrientremoval?gclid=CjwKCAjwqcKFBhAhEiwAfEr7zQlkSLtkV0eFtzA6uDy4Sn6i5jbzqhVEcSJ6iLLvqY1KBXJLAYVrJ BoCJk4QAvD_BwE

ILLINOIS

Modern Corn Hybrids' Nutrient Uptake Patterns

By Ross B. Bender, Jason W. Haegele, Matias L. Ruffo, and Fred E. Below

Biotechnology, breeding, and agranamic advancements have propelled corn yields to new highs with little guidance as to have to fertilize these modern corn hybrids to achieve their maximum yield potential. Current fertilization prostices, developed decades ago, may not match uptake capabilities of modern hybrids that contain transgenic insect protection now grown at population densities higher than ever before. A reevaluation of nutrient uptake and partitioning can provide the foundation for fine-tuning our practices as we strive to achieve corn's maximum yield potential.

A summarized by Broulsema et al. (2012), optimizing matrient management includes using the right source at the right rate, right time, and right place—the 4R approach. Research pertaining to primary macroautrism uptake, partitioning, and timing (Sayre, 1948; Hanway, 1962; Karlen et al., 1968), though fundamentally accurate for previous hybrids and management practices, may be unrepresentative of modern hybrids in higher yielding environments. The objective of this study was to determine how modern, transgenic insect-protected corn hybrids in high-yielding systems take up and utilize natrients.

Nutrient contents of N, P, K, S, Zn, and B were determined at six incrementally spaced growth stages: V6 (vegetative leaf stage 6), V10, V14, R2 (blister), R4 (dough), and R6 (physiological maturity) (Hanway, 1963). Field experiments were conducted at the Northern Illinois Agronomy Research Conter in DeKalb, Illinois and the Department of Crop Sciences Research and Education Center in Urbana, Illinois, A total of six hybrids ranging in relative maturity from 111 to 114 days were used with genetic resistance to feeding from Western Corn Rootworm (Diabrotica urgifera rirgifera), European Corn Borer (Ostrinia nubilalis), and other species in the Lepidoptera order. In all cases, hybrids were seeded to obtain a final stand of 34,000 plants/A. Representative plants were separated, analyzed, and evaluated in four tissue fractions: 1) stalk and leaf sheaths; 2) leaf blades; 3) tassel, cob, and husk leaves; and 4) com grain, respectively referred to as stalk, leaf, reproductive, and grain tissues. Agronomic management at planting included a soil insecticide and a broadcast application of 150 Ib P.O./A as MicroEssentials® SZ** along with 180 lb N/A as urea. This was followed by 60 lb N/A as Super-U (with urease

Fully-filed cars of cont-an indicator of successfully matching soil nutrient scopily with and demand.

nutrients required (or production, and 2) the amount of that nutrient contained in the grain, referred to as "removed with grain" (Table 1). Our grain nutrient concentration values, in grain" (Table 1) are in agreement with those recently used by the fartilizer industry to determine replacement fortilizer rates (Brunisema et al., 2012). In the past 50 years, however, the quantity of N, P, and K required for production and the amount of nutrients removed with the grain have nearly doubled across a variety of management systems used in the 1960s (Hanway, 1962).

Newer, high yielding hybrids removing less nutrients per bu than "book values"

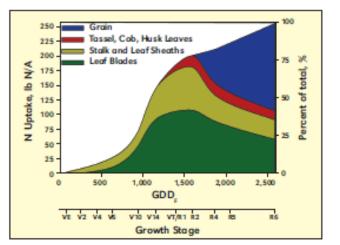


Figure 2. Total maize N uptake and partitioning across four plant stover fractions: leaf, stalk, reproductive, and grain tissues. Each value is a mean of six hybrids across two site-years at Urbana, IL (2010) and DeKalb, IL (2010). GGD_F = growing degree days (Fahrenheit)

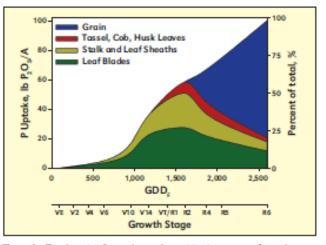


Figure 3. Total maize P uptake and partitioning across four plant stover fractions: leaf, stalk, reproductive, and grain tissues. Each value is a mean of six hybrids across two site-years at Urbana, IL (2010) and DeKalb, IL (2010). GGD_e = growing degree days (Fahrenheit)

Better Crops/Vol. 97 (2013, No.1)

Lack of association between crop yields and nutrient concentration

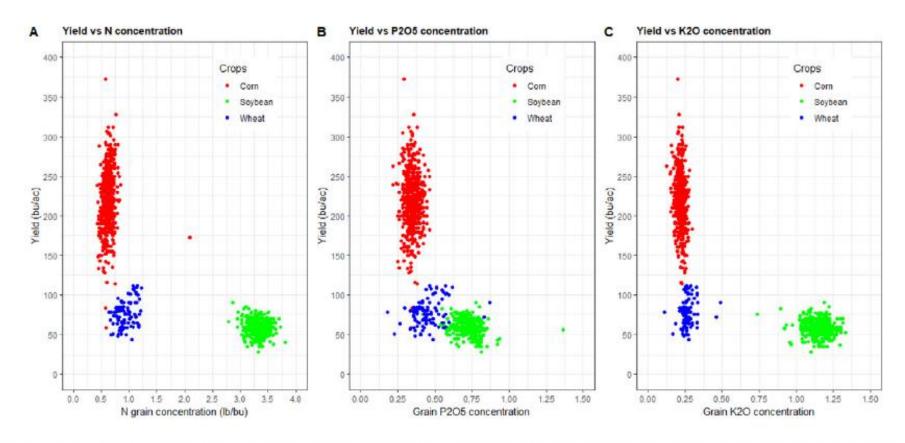
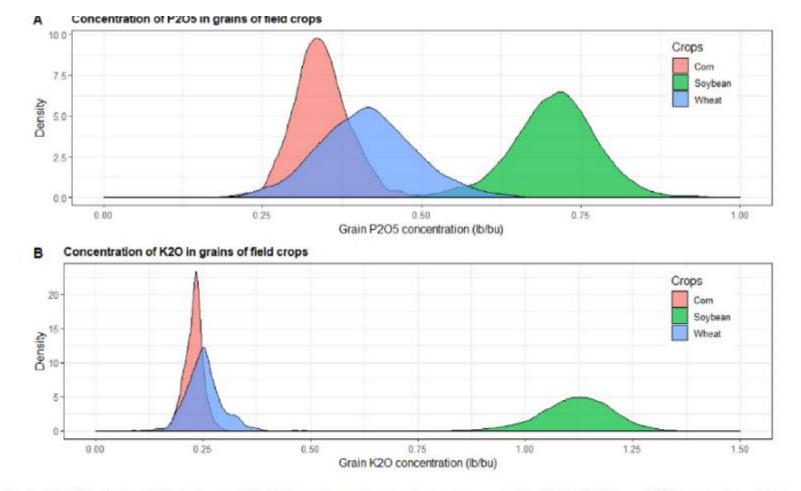



Fig.2. Scatterplots of the concentration of A), N, B) P_2O_5 , and C) K_2O in the grain (lbs/bu) against yield (bu/ac) of field crops of corn (n = 644), soybean (n = 390), and wheat (n = 101).

Illinois. Villamil et al, 2019. https://experts.illinois.edu/en/publications/new-grain-p-and-k-concentration-values-for-illinois-field-crops

3

Defined range of nutrients

ת

Fig. 3. Distribution of (A) P₂O₅ and (B) K₂O grain concentrations measured in 2335, 2621, and 825 samples of corn, sovbean, and wheat, respectively.

Illinois. Villamil et al, 2019. https://experts.illinois.edu/en/publications/new-grain-p-and-k-concentration-values-for-illinois-field-crops

Using results for recommendations

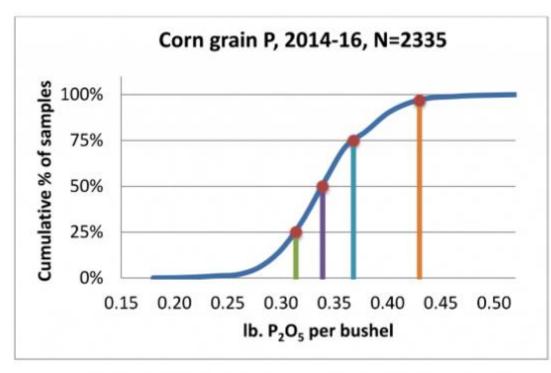
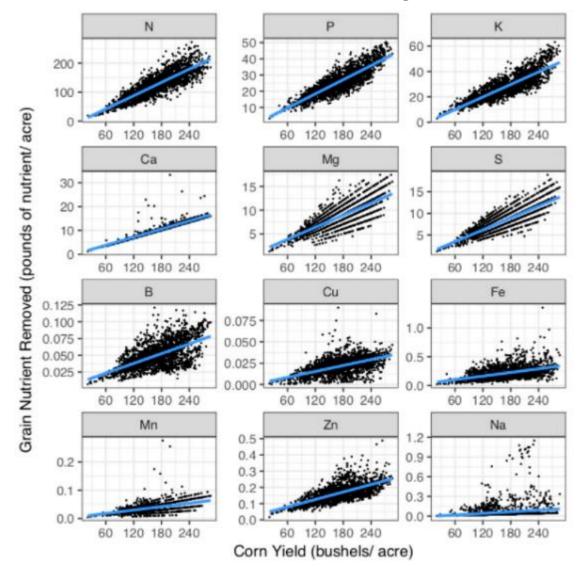
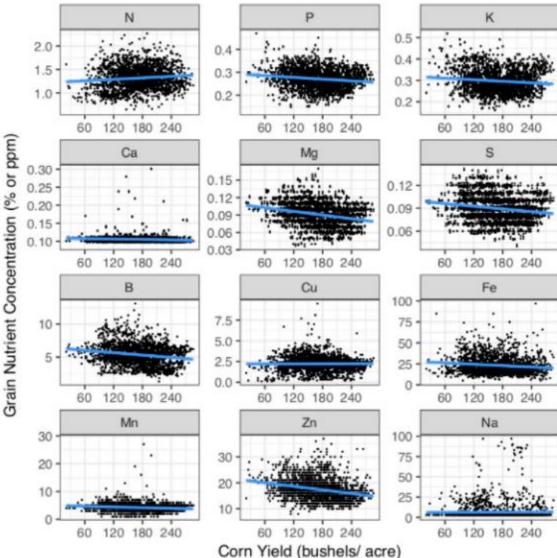



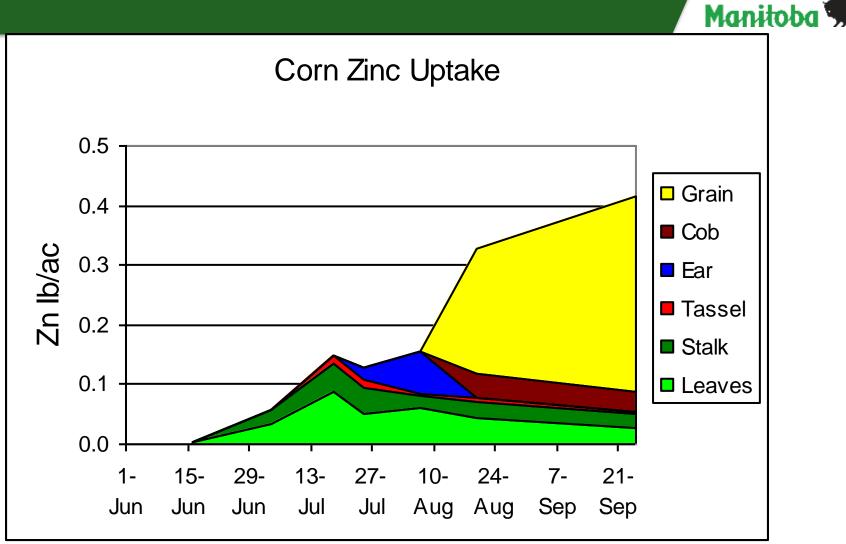
Figure 2. Cumulative distribution of corn grain P levels for 2,335 samples collected from 2014-2016 in Illinois. Vertical lines identify the 25th, 50th, and 75th percentile values, and the current "book value" (0.43 lb P2O5 per bushel, at the 97th percentile) is indicated by the vertical line on the right.

Illinois and Iowa choose to report the 75th percentile values for removals rather than the mean (or median). This was a cautious approach to avoid any risk of under fertilizing – but was still considerably less than the previous book value of 0.43

https://farmdoc.illinois.edu/field-crop-production/uncategorized/new-grain-phosphorus-and-potassium-numbers.html


Ohio studies – a full analysis including micronutrients – corn, soybeans, wheat

Compared to 20-30 yrs ago, K removal is: 26% less in corn, 19% less in soys, 35% less in wheat.


https://ohioline.osu.edu/factsheet/anr-74

Ohio studies – a full analysis including micronutrients – corn, soybeans, wheat

Nutrient concentrations are weakly related to yield. For most, as yields increase concentrations declined slightly suggesting higher yielding grain contains more starch (or lipids) relative to nutrient.

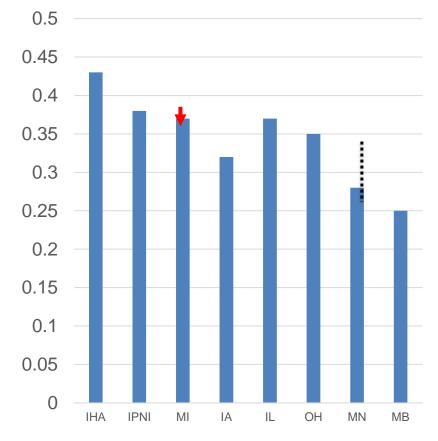
https://ohioline.osu.edu/factsheet/anr-74

Zn was predominantly in seed of corn so crop removal is more important than other micronutrients.

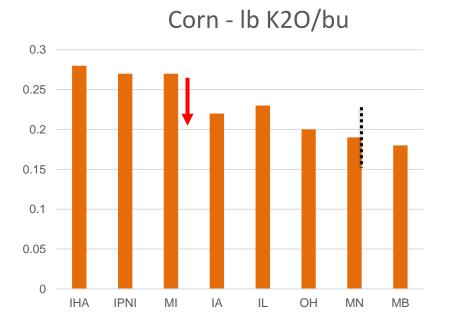
Some translocation of Zn from leaves and stem to seed. Most seed accumulation is due to continued root uptake.

Manure impact on nutrient removal

		Control	Liq-N rate	Liq-P rate	Solid N Rate	Solid P rate
Canola	Lb N/bu	1.54 – 1.71	1.72- 1.80	1.74- 1.76	1.67- 1.68	1.68- 1.71
	Lb P2O5/bu	0.62- 0.75	0.73- 0.74	0.53- 0.73	0.79- 0.82	0.64- 0.83
Barley	Lb N/bu	0.99	1.04	1.08	1.02	1.12
	Lb P2O5/bu	0.48	0.53	0.47	0.52	0.54


Manure marginally increased nutrient content of grain, but **occasionally P content was lower due to a dilution effect** brought about by the very high yield increase.

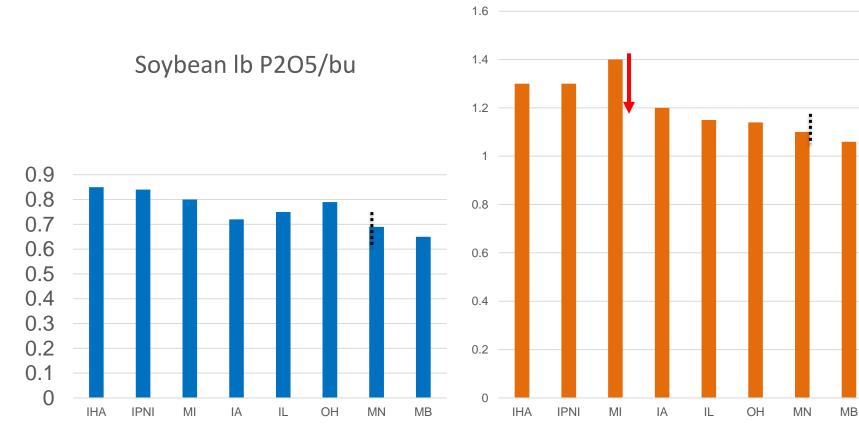
Flaten 2017. https://cdnsciencepub.com/doi/pdf/10.1139/cjps-2017-0160



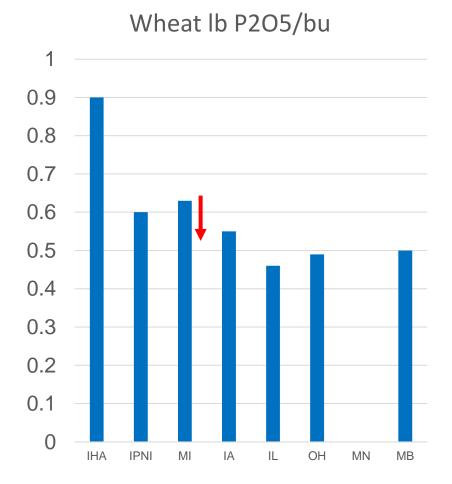
P and K removal in Corn

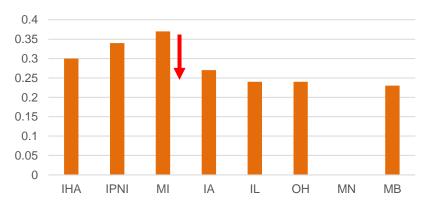
Corn lb P2O5/bu

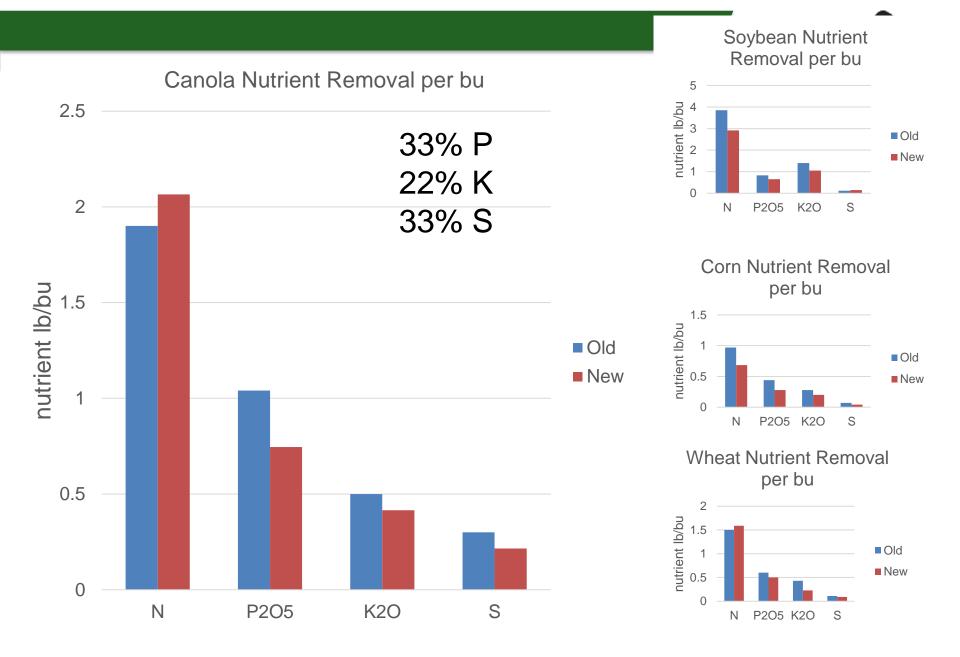
26% P 32% K



P and K Removal in Soybeans


20% P 15% K




P and K removal in Wheat

16% P 30% K

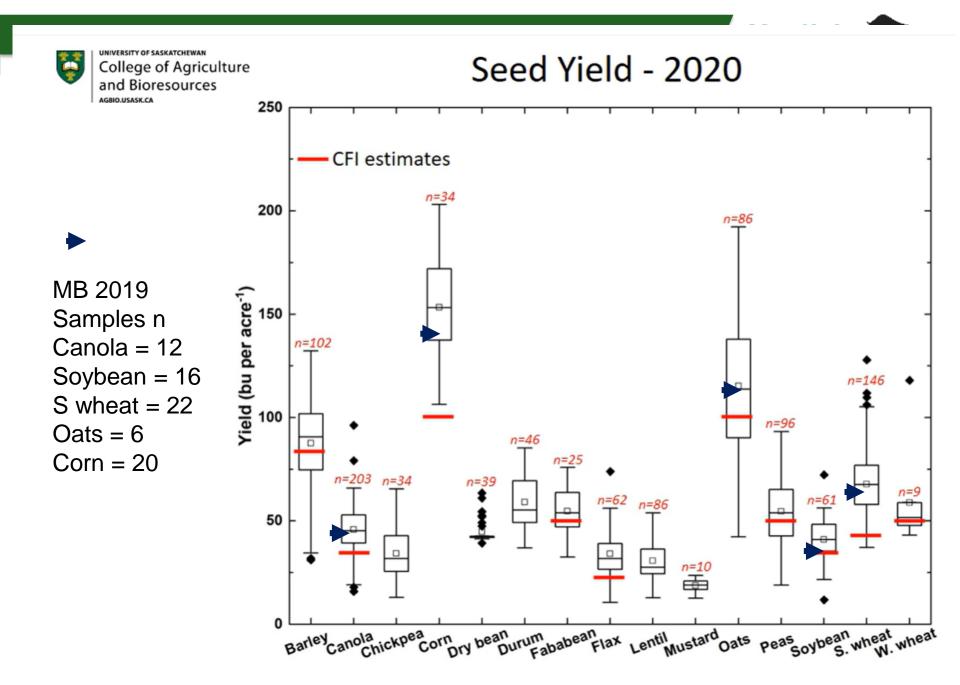
https://umanitoba.ca/faculties/afs/agronomists_conf/media/Poster_-_Heard_2.pdf

MB Evaluation – 2019 to validate historic numbers 🗫

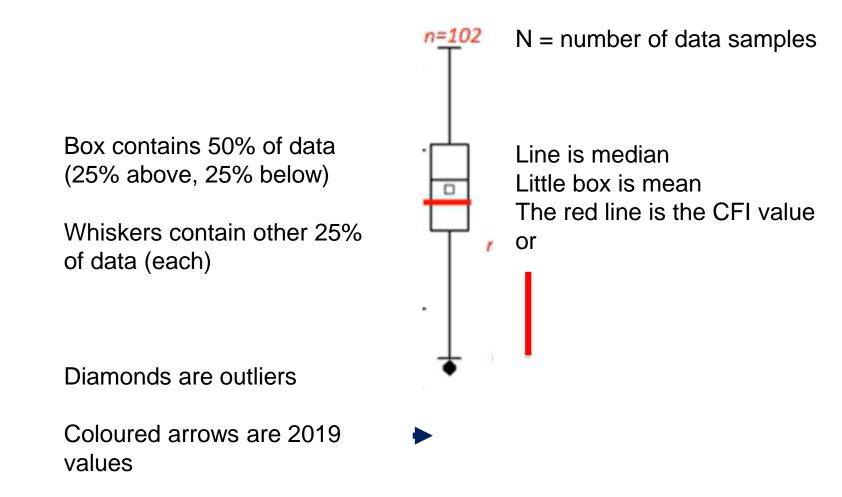
College of Agriculture and Bioresources AgBio.usask.ca

Revising the Crop Nutrient Uptake and Removal Guidelines for Western Canada

Fran Walley¹, Rich Farrell¹, Gazali Issah¹, Lyle Cowell², John Heard³

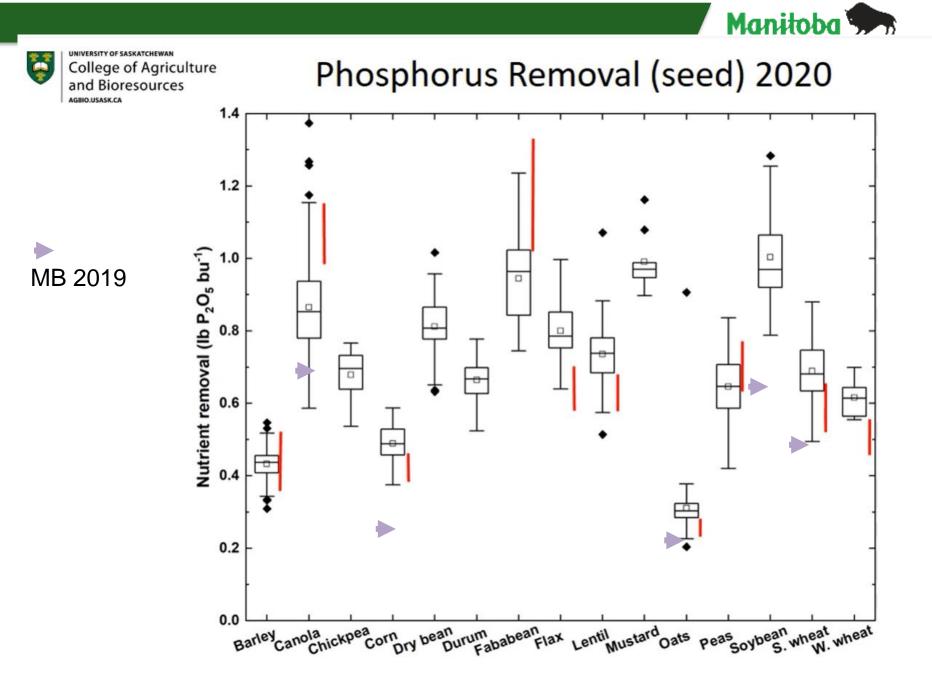

¹Department of Soil Science, University of Manitoba, ²Nutrien Ag Solutions, ³Manitoba Agriculture and Resource Development

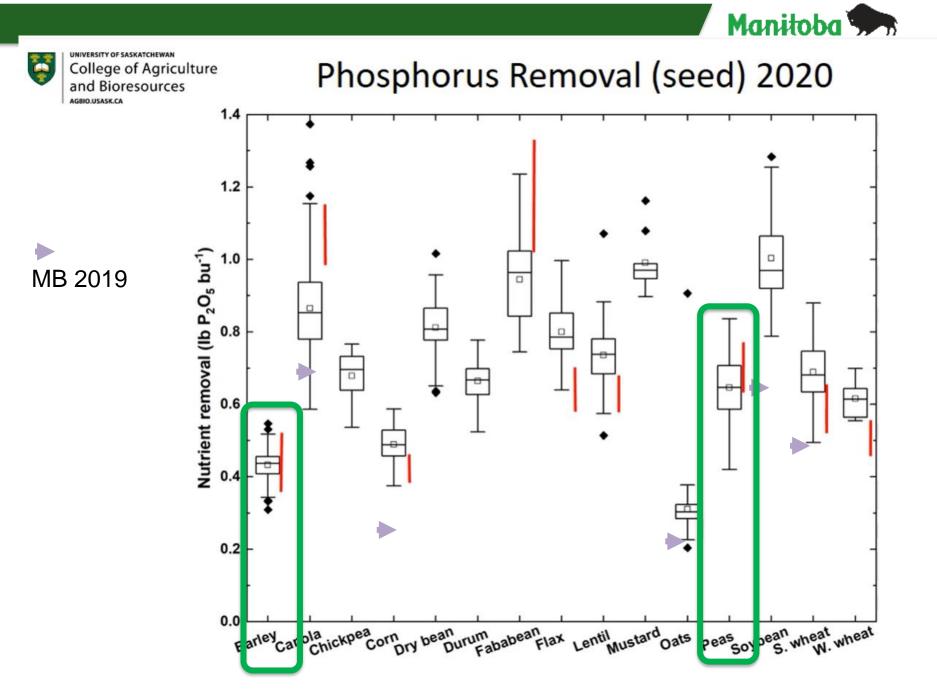
fran.walley@usask.ca

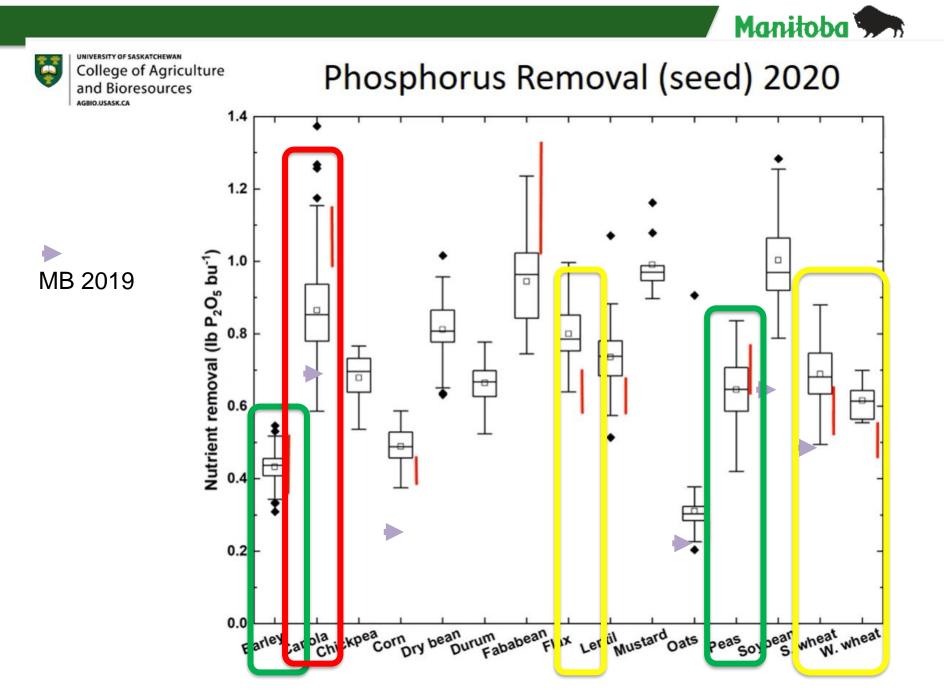


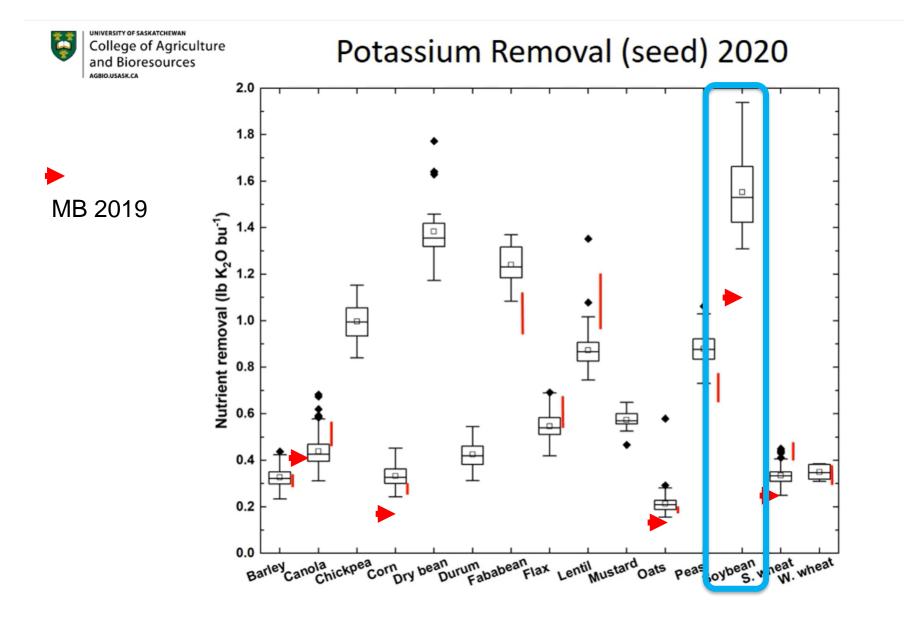
Samples collected in 2020 – 100 samples per crop

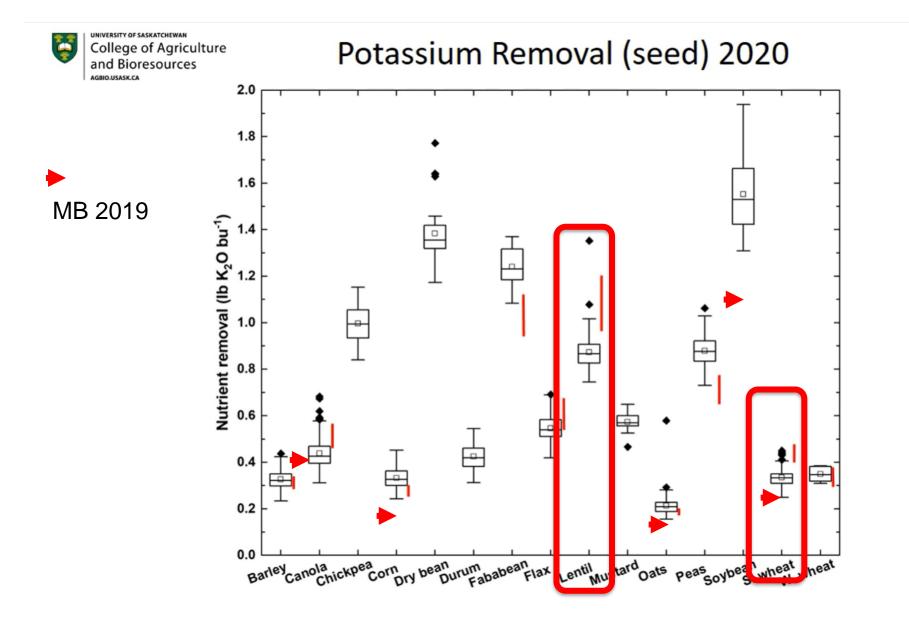
	MB	SK	AB
Barley	5	45	51
Canola	37	87	41
Chickpea	0	85	15
Corn	94	0	6
Lentil	0	90	10
Oats	16	56	28
Soybean	90	9	0
Field pea	3	50	47
Flax	5	83	12
Mustard	10	20	10
Spring wheat	17	47	36
Durum wheat	0	98	2
Winter wheat	18	46	36
Dry beans**	20	10	10

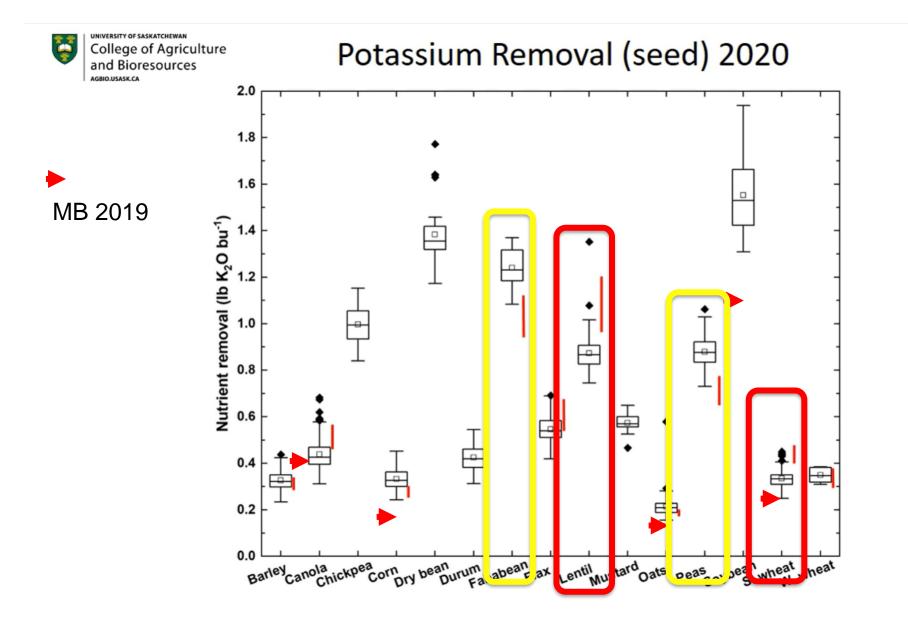

How the data is displayed

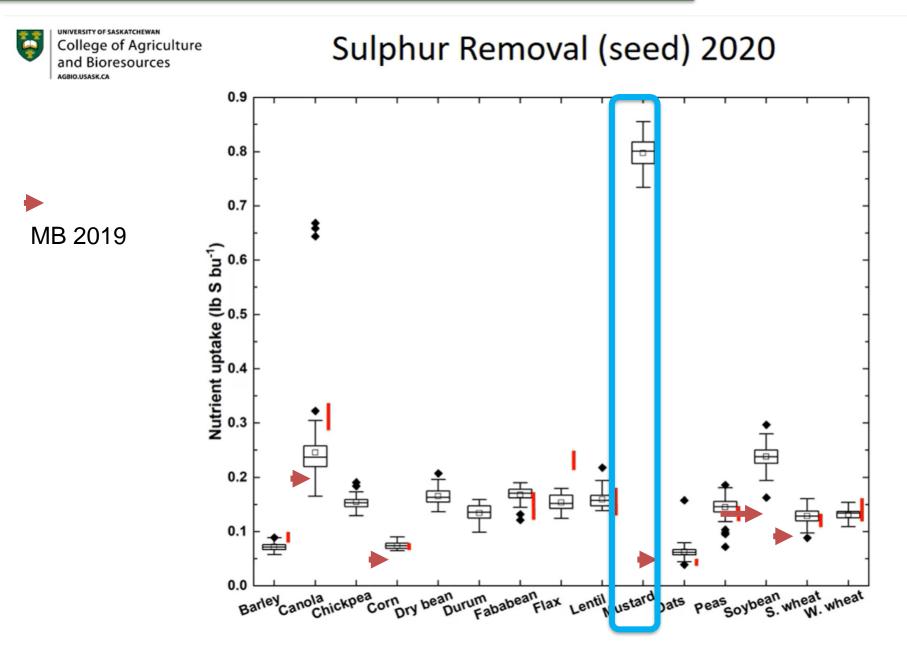


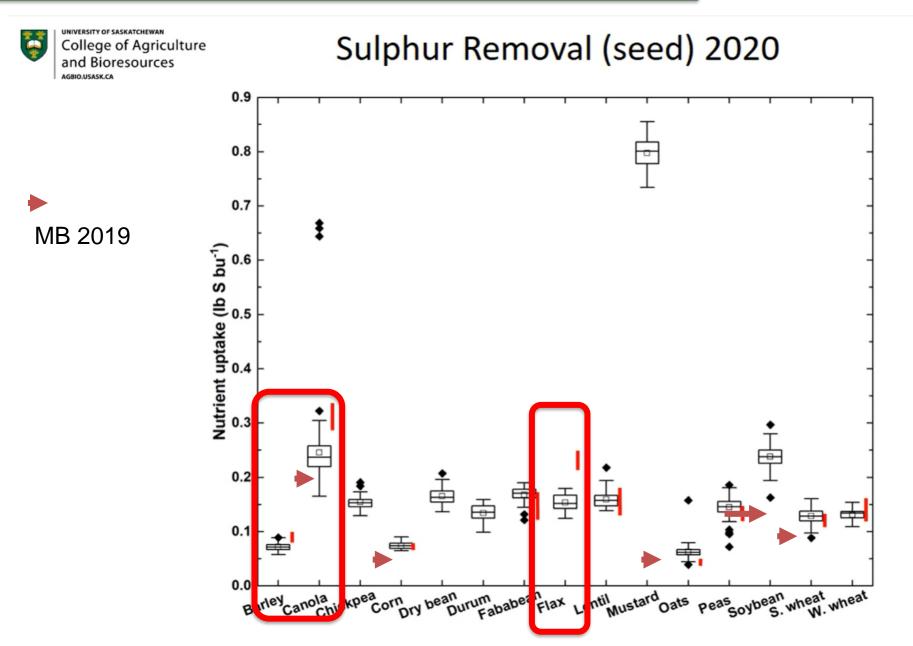

UNIVERSITY OF SASKATCHEWAN Nitrogen Removal (seed) 2020 College of Agriculture and Bioresources AGBIO.USASK.CA 5.0 n=61 CFI removal range estimates MB 2019 4.0 n=86 Nutrient removal (Ib N bu⁻¹) n=25 n=34 n=96 n=10 n=62 3.0 n=203 n=39 n=146 n=46 2.0 n=9 n=102 n=34 1.0 0.0 Barley Canola Chickpea Corn Dry bean Durum Fababean Flax Lentil Mustard Oats Peas Soybean W. wheat W. wheat

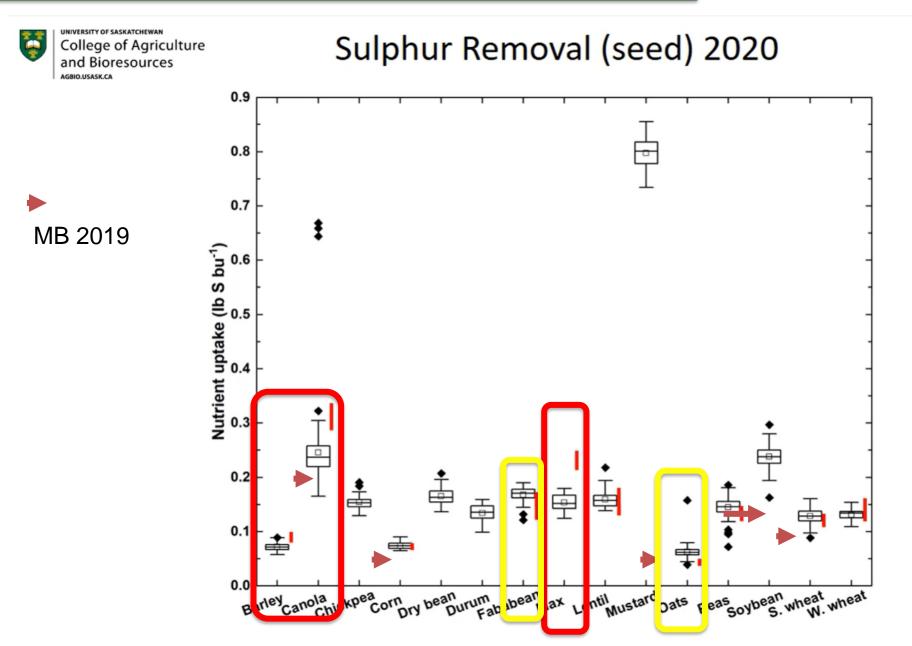

UNIVERSITY OF SASKATCHEWAN Nitrogen Removal (seed) 2020 College of Agriculture and Bioresources AGBIO.USASK.CA 5.0 n=61 CFI removal range estimates MB 2019 4.0 n=86 Nutrient removal (Ib N bu⁻¹) n=25 n=34 n=96 n=10 n=62 3.0 n=203 n=39 n=46 2.0 n=9n=34 1.0 n=86 0.0 kpea Corn Dry bean Durum Fababean Flax Lentil Mustar Oats Pas Soybran W. heat Barley anola Chir

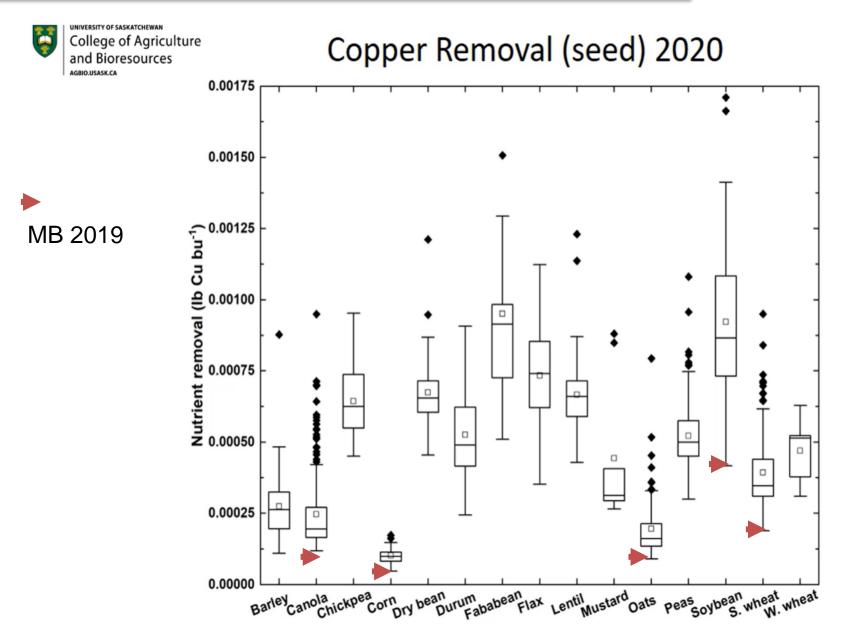

UNIVERSITY OF SASKATCHEWAN Nitrogen Removal (seed) 2020 College of Agriculture and Bioresources AGBIO.USASK.CA 5.0 n=61 CFI removal range estimates MB 2019 4.0 n = 86Nutrient removal (Ib N bu⁻¹) n=25 n=34 n = 96n=10 n=62 3.0 n=203 n=39 n=46 2.0 n=34 1.0 n=86 0.0 entil Ni star Oats Pas Soybran Wheat heat kpea Dry bean Fababean Flax Barley anola Chir

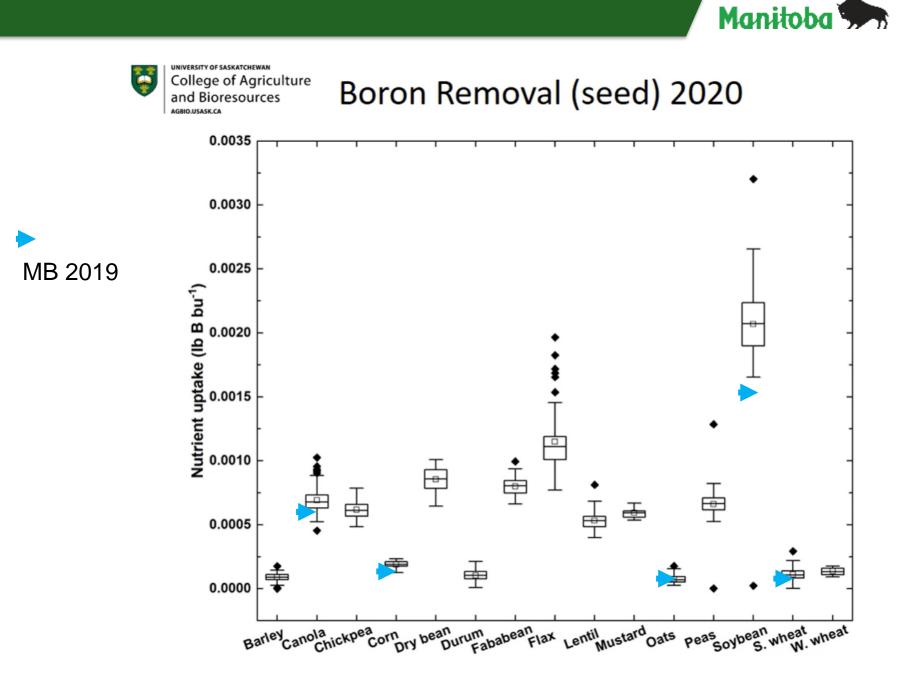


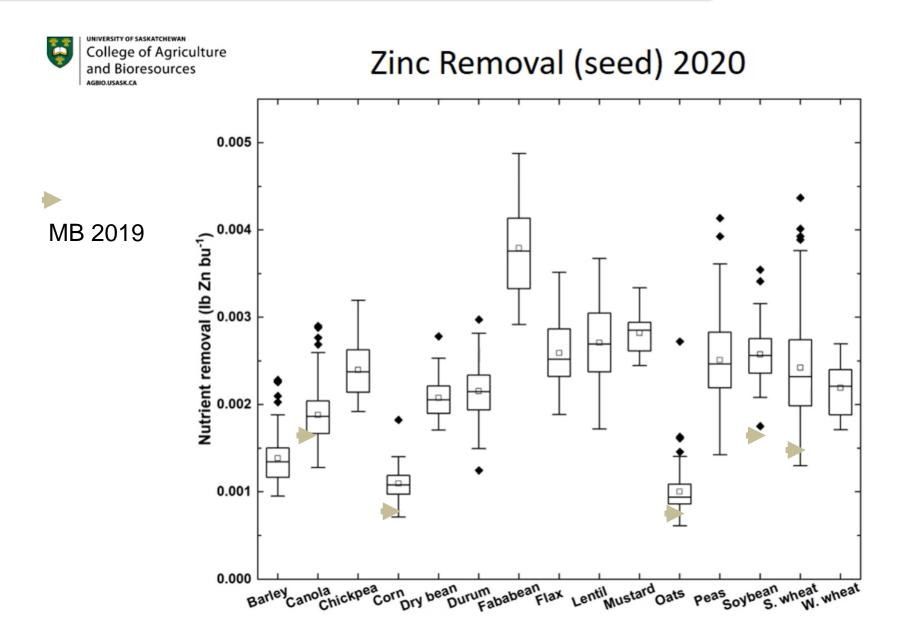




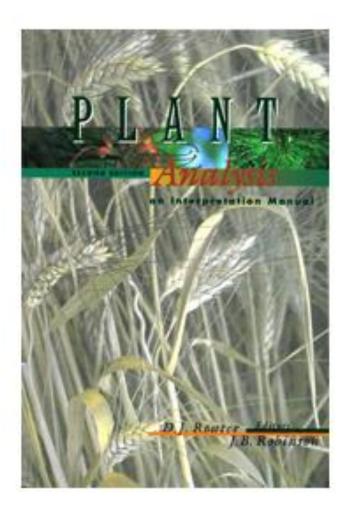








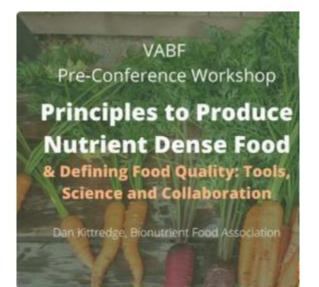
Stay tuned for final results


Funding provided by:

- Western Grain Research Foundation
- Alberta Wheat Commission
- Prairie Oat Growers Association
- Saskatchewan Canola Development Commission
- Saskatchewan Flax Development Commission
- Saskatchewan Wheat Development Commission

Is seed nutrient concentration useful as a diagnostic tool of deficiencies? Rarely.

Common benchmark uses wheat protein to indicate N sufficiency for yield HRS = >13.2-13.5% indicates sufficient N for full yield (Racz) HRW = >11.5% (Goos)


Most of the critical or deficient values listed in "Plant Analysis: An Interpretation Manual" now fall within the normal range of current crops.

Nutrient	Corn	Soys
N%	1.5%	6.14%
P%	0.28%	0.33%
K%	0.36%	1.74%
S%	0.17%	-
Mn ppm	5	13
Zn ppm	-	23

Are reductions in nutrient concentration a problem?

No – a sign of success! Full yield expression and carbohydrate accumulation.

Despite what you might read on the internet.

Feb 17 & 18: Winnipeg, MB – Producing Nutrient Dense Food Conference

Nutrient Removal Values

Preliminary observations:

- Corn P and K concentration/bu 26% & 32% less
- Soybeans = 20% & 15% less
- Wheat = 16% & 30% less
- Canola = 33% & 22% less
- Impact on "maintenance and build calculations"
- Important in maintaining productive fertility levels
 - yield increases are still bigger than these reductions in concentration
- Manure regulations? (P based rates, 1000 to 1500 ac)

Questions

John.Heard@gov.mb.ca

