4R Nutrient Management Trials: How Do We Choose the Right Rs?

Chris Holzapfel, MSc PAg

AGVISE Canada Seminar Portage la Prairie, MB

Presentation Overview

- 1. 4R Nitrogen Management in Spring Wheat
 - Indian Head, 2017-21
- 2. Canola Seed Safety & Yield Response to Varying Phosphorus Forms
 - Multiple locations, 2020-21
- 3. Malting Barley & Wheat Response to Potash Rate & Placement
 - Multiple locations, 2021

Demonstrating 4R Nitrogen Fertilizer Management Principles in CWRS Wheat (Indian Head 2017-21)

4R Nitrogen Treatments: Indian Head 2017

#	Form	Timing / Placement	Rate *
1	Urea	Side-band	1.0x May 5
2	Urea	Spring Surface Broadcast	1.0x
3	UAN (Urea Ammonium-Nitrate)	Spring Surface Dribble-band	1.0x
4	NBPT (Agrotain®)	Spring Surface Broadcast	1.0x May-4
5	DCD+NBPT (SUPERU®)	Spring Surface Broadcast	1.0x
6	Urea	50:50 Split (side-band : in-crop)	1.0x
7	UAN (Urea Ammonium-Nitrate)	50:50 Split	1.0x May-5/
8	NBPT (Agrotain®)	50:50 Split	1.0x Jun-20
9	DCD+NBPT (SUPERU®)	50:50 Split	1.0x

^{* 1}x = 116lb N/ac (soil + fertilizer)

Nitrogen Rate Effects on Wheat Yield & Protein (Indian Head 2017)

N Source = Side-banded Urea Residual NO_3 -N = 27 lb/ac (fall composite)

N Management Effects on Wheat Yield Indian Head 2017

Portage la Prairie, MB

15-03-2022

N Management Effects on Wheat Protein **Indian Head 2017**

15-03-2022

AGVISE Canada Seminar

Portage la Prairie, MB

4R Nitrogen Treatments: Indian Head 2018

#	Form	Timing / Placement	g / Placement Rate *		
1	Urea	Side-band	1.0x		
2	NBPT (Agrotain®)	Side-band	1.0x	May 16	
3	DCD+NBPT (SUPERU®)	Side-band	1.0x		
4	Urea	Fall Surface Broadcast	1.0x		
5	NBPT (Agrotain®)	NBPT (Agrotain®) Fall Surface Broadcast		Oct 17	
6	DCD+NBPT (SUPERU®)	(SUPERU®) Fall Surface Broadcast			
7	Urea	Fall In-Soil Band	1.0x		
8	NBPT (Agrotain®) Fall In-Soil Band		1.0x	Oct 17	
9	DCD+NBPT (SUPERU®)	Fall In-Soil Band	1.0x		

^{* 1}x = 116 lb/ac (soil + fertilizer)

Nitrogen Rate Effects on Wheat Yield & Protein (Indian Head 2018)

N Source = Side-banded Urea Residual NO_3 -N = 9 lb/ac (fall composite)

N Management Effects on Wheat Yield Indian Head 2018

N Management Effects on Wheat Protein Indian Head 2018

4R Nitrogen Treatments: Indian Head 2019

#	Form	Timing / Placement	Rate *	
1	Urea	Side-band	1.0x	
2	ESN® polymer coated urea	Side-band	May	1.0x
3	Agrotain® treated urea	Side-band	6	1.0x
4	SuperUrea [®]	Side-band		1.0x
5	Urea	Fall Surface Broadcast	1.0x	
6	ESN® polymer coated urea	Fall Surface Broadcast	1.0x	
7	Agrotain® treated urea	Fall Surface Broadcast 9		1.0x
8	SuperUrea [®]	Fall Surface Broadcast		1.0x
9	Urea	Spring Surface Broadcast (pre-see	1.0x	
10	ESN® polymer coated urea	Spring Surface Broadcast	1.0x	
11	Agrotain® treated urea	Spring Surface Broadcast	1.0x	
12	SuperUrea [®]	Spring Surface Broadcast	1.0x	

^{* 1}x = 111 lb/ac (soil + fertilizer)

Nitrogen Rate Effects on Wheat Yield & Protein (Indian Head 2019)

N Source = Side-banded Urea Residual NO_3 -N = 35 lb/ac (fall composite, includes N from MAP)

N Management Effects on Wheat Yield **Indian Head 2019**

Pr > F

0.392

0.003

0.719

N Management Effects on Wheat Protein **Indian Head 2019**

Source	Pr > F
Form (F)	0.232
Time / Place (TP)	<0.001
FxTP	0.750

spring Broadcast - DCD+NBPT fall Broadcast-ESM fall Broadcast-NBPT Sideband-NOPT Side-band-DCD+NBPT Fall Broadcast - Urea fall Broadcast - DCD+NBPT spring Broadcast-ESM spring Broadcast. MBPT spring Broadcast. Urea Sideband ESM

4R Nitrogen Treatments: Indian Head 2020-21

#	Form	Timing / Placement	Rate (soil + fertilizer)
1	N/A	N/A	6 lb N/ac (from MAP) + Residual†
2	Untreated Urea	Side-Band (≈1.5" depth)	147 lb N/ac (High N – 1.5x rate)
3	Untreated Urea	Side-Band (≈1.5" depth)	98 lb N/ac (1.0x rate)
4	Untreated Urea	Fall Surface Broadcast	98 lb N/ac (1.0x rate)
5	Untreated Urea	Spring Surface Broadcast	98 lb N/ac (1.0x rate)
6	Untreated Urea	Fall Deep Band (≈2.3")	98 lb N/ac (1.0x rate)
7	Untreated Urea	Fall Shallow Band (≈1")	98 lb N/ac (1.0x rate)
8	DCD + NBPT (SUPERU®)	Side-Band (≈1.5" depth)	147 lb N/ac (High N – 1.5x rate)
9	DCD + NBPT	Side-Band (≈1.5" depth)	98 lb N/ac (1.0x rate)
10	DCD + NBPT	Fall Surface Broadcast	98 lb N/ac (1.0x rate)
11	DCD + NBPT	Spring Surface Broadcast	98 lb N/ac (1.0x rate)
12	DCD + NBPT	Fall Deep Band (≈2.3")	98 lb N/ac (1.0x rate)
13	DCD + NBPT	Fall Shallow Band (≈1")	98 lb N/ac (1.0x rate)

[†]Residual NO₃-N (0-24"): 8 lb/ac in 2019-20 and 14 lb/ac in 2020-21

4R Nitrogen Treatments: Indian Head 2020-21 Relevant Weather & Soil Test Information

Year	Prev. Sep	Prev. Oct	May	June	July	August	May-Aug
	Mean Temperature (°C)						
2020	11.9	1.0	10.7	15.6	18.4	17.9	15.7 (101%)
2021	11.5	1.4	9.0	17.7	20.3	17.1	16.0 (103%)
LT	11.5	4.0	10.8	15.8	18.2	17.4	15.6
	Total Precipitation (mm)						
2020	120.8	10.4	27.3	23.5	37.7	24.9	113 (46%)
2021	15.0	3.8	81.6	62.9	51.2	99.4	295 (121%)
LT	35.3	24.9	51.8	77.4	63.8	51.2	244

2019-20: Wet soil preceding fall N applications but limited precipitation following both fall the & spring applications – extremely dry growing season

2020-21: Extremely dry fall & early spring but 80 mm of rain received starting 12 days after spring broadcast applications – variable moisture conditions through the 2021 growing season

Residual N: Consistently low with 8-14 lb NO₃-N/ac in fall composites

N Management Effects on Wheat Yield Indian Head 2020

SB – Side Band fBC – fall Broadcast sBC – spring Broadcast DpB – fall Deep Band ShB – fall shallow band

N Management Effects on Wheat Protein **Indian Head 2020**

Portage la Prairie, MB

Predetermined Contrast Comparisons Two-Pass vs. Sideband (2020)

N Management Effects on Wheat Yield Indian Head 2021

SB – Side Band

fBC – fall Broadcast

sBC – spring Broadcast

DpB – fall Deep Band

ShB – fall shallow band

N Management Effects on Wheat Protein Indian Head 2021

SB – Side Band fBC – fall Broadcast sBC – spring Broadcast DpB – fall Deep Band ShB – fall shallow band

Predetermined Contrast Comparisons Two-Pass vs. Sideband (2021)

Predetermined Contrast Comparisons 1x Side Band (3,9) versus 1.5x Side Band (2,8)

Predetermined Contrast Comparisons Untreated Urea (2-7) versus DCD+NDPT (8-13)

Predetermined Contrast Comparisons Spring Broadcast (5,11) versus Fall Broadcast (4,10)

Predetermined Contrast Comparisons Fall Deep Band (6,12) versus Fall Shallow Band (7,13)

4R N Management Principles: Conclusions

- Relative performance of N management strategies varies with environment, but it
 has been repeatedly shown that single-pass seeding-fertilization is hard to improve
 upon for spring crops in western Canada, over a wide range of conditions
- Reasons for utilizing alternative N management strategies have more to do with improving seeding logistics, taking advantage of lower fertilizer prices in the fall, & mitigating risk (i.e., deferring N application under severe drought) than agronomy; but flexibility is important for farmers in this regard
- Enhanced efficiency or controlled release N forms can reduce the risks associated with less optimal timing/placement options, but do not usually close the gap entirely & timing/placement is more important than formulation for minimizing losses & maximizing crop utilization
- Deeper placement of banded fertilizer can be advantageous; however, the difference between shallow vs. deep banding is much less than shallow banding vs. broadcasting
- Split-applications have greater potential to be truly beneficial in wetter and warmer environments where the potential for losses, yields, & total N requirements are all higher, the growing season is longer & the risks of in-crop N being stranded (due to dry weather) are lower

15-03-2022

Canola Seed Safety & Yield Response to Various Phosphorus Fertilizer Forms (multi-site 2020-21)

Canola Seed Safety & Yield Response to Various Phosphorus Forms (2020-21)

Objectives: To demonstrate canola establishment & yield response to increasing rates of seed-placed phosphorus fertilizer for various formulations

Locations: Indian Head (2020 & 2021), Melfort (2021), Outlook (2021), Redvers (2021), Scott (2020 & 2021), Swift Current (2020 & 2021), & Yorkton (2021)

Treatments: 4 formulations x 3 rates plus a 0 P control treatment

<u>Formulations</u>

- 1) Monoammonium Phosphate (MAP; 11-52-0)
- 2) MicroEssentials® **\$15** (13-33-0-15)
- 3) Crystal Green® (**Struvite**; 5-28-0 + 10% Mg)
- 4) 50:50 MAP:Struvite (**Blend**; 8-40-0 + 5% Mg)
- * Salt Index values are MAP=27, S15=21, Struvite=8

Data Collection: Emergence & final densities, maturity, & yield

Note: All P fertilizer was seed-placed, urea & ammonium sulphate were side-banded

Rates

- 1) 22 lb P_2O_5/ac
- 2) $40 \text{ lb } P_2O_5/ac$
- 3) $58 \text{ lb } P_2O_5/ac$

Location – Year	Avg. Temperature (°C)	Total Precipitation (mm)		
Indian Head – 2020	15.7 (101%)	113 (46%)		
Indian Head – 2021	16.0 (103%)	295 (121%)		
Indian Head – LT ^Z	15.6	244		
Melfort – 2021	16.2 (106%)	139 (61%)		
Melfort – LT	15.2	226		
Outlook ^Y – 2021	17.1 (106%)	96 (47%) + 208 irrigation		
Outlook – LT	16.1	205		
Redvers – 2021 16.8 (105%)		247 (93%)		
Redvers – LT 16.0		267		
Scott – 2020	14.6 (98%)	258 (114%)		
Scott – 2021	15.8 (107%)	149 (66%)		
Scott – LT	14.8	227		
Swift Current – 2020	15.9 (100%)	157 (83%)		
Swift Current – 2021 16.8 (106%)		147 (78%)		
Swift Current – LT	15.8	188		
Yorkton – 2021	16.5 (109%)	148 (54%)		
Yorkton – LT 15.2		272		

LT – Long-Term (1981-2010); Outlook site received supplemental irrigation

Soil Test Info (0-6")

Location – Year	рН	SOM (%)	CEC (meq)	Olsen-P (ppm)
Indian Head – 2020	7.9	5.2	40.6	7
Indian Head – 2021	7.8	4.8	47.2	8
Melfort – 2021	5.9	12.1	n/a	8
Outlook – 2021	7.9	2.7	19.9	11
Redvers – 2021	8.0	3.6	34.6	6
Scott – 2020	6.4	4.0	13.3	12
Scott - 2021	5.5	4.4	15.7	6
Swift Current – 2020	6.6	2.8	n/a	10
Swift Current – 2021	6.5	2.4	n/a	16
Yorkton – 2021	7.1	4.7	22.1	13

F-test Results x Site: Spring Plant Density

Location – Year	Form	Rate	Form × Rate	Entry	
	Pr > F (p-value)				
Indian Head – 2020	ns	ns	ns	ns	
Indian Head – 2021	ns	ns	ns	ns	
Melfort – 2021	ns	ns	ns	ns	
Outlook – 2021	<0.001	<0.001	<0.001	<0.001	
Redvers – 2021	0.059	ns	0.009	0.008	
Scott – 2020	0.037	ns	ns	ns	
Scott – 2021	<0.001	0.026	<0.001	<0.001	
Swift Current – 2020	ns	ns	ns	ns	
Swift Current – 2021	<0.001	<0.001	<0.001	<0.001	
Yorkton – 2021	<0.001	ns	<0.001	<0.001	

Seed-Placed P Form Effects on Canola Emergence (Non-Responsive 4/10 Sites)

Averaged Across Rates of 22, 40, & 58 lb P₂O₅/ac

Seed-Placed P Form Effects on Canola Emergence (Responsive 6/10 Sites)

Averaged Across Rates of 22, 40, & 58 lb P₂O₅/ac

Seed-Placed P Rate Effects on Canola Emergence (Non-Responsive 7/10 Sites)

Averaged Across Four Fertilizer Formulations

Seed-Placed P Rate Effects on Canola Emergence (Responsive 3/10 Sites)

Averaged Across Four Fertilizer Formulations

AGVISE Canada Seminar Portage la Prairie, MB

Seed-Placed P Form x Rate Effects on Canola Emergence at Outlook 2021

Contrast	Pr > F
MAP – lin	<0.001
MAP – quad	0.733
S15 – lin	<0.001
S15 – quad	0.025
Struv – lin	0.006
Struv – quad	0.533
Blend – lin	0.351
Blend – quad	0.187

15-03-2022

Seed-Placed P Form x Rate Effects on Canola Emergence at Redvers 2021

Contrast	Pr > F
MAP – lin	0.818
MAP – quad	0.307
S15 – lin	0.495
S15 – quad	0.313
Struv – lin	0.411
Struv – quad	0.210
Blend – lin	0.002
Blend – quad	0.526

Seed-Placed P Form x Rate Effects on Canola **Emergence at Scott 2021**

Phosphorus Rate (lb P₂O₅/ac)

Pr > F

0.002

0.431

0.011

0.427

0.429

0.191

0.073

0.501

Seed-Placed P Form x Rate Effects on Canola Emergence at Swift Current 2021

Contrast	Pr > F
MAP – lin	0.002
MAP – quad	0.023
S15 – lin	<0.001
S15 – quad	0.975
Struv – lin	0.473
Struv – quad	0.403
Blend – lin	0.113
Blend – quad	0.032

15-03-2022

Seed-Placed P Form x Rate Effects on Canola Emergence at Yorkton 2021

Contrast Pr > F0.291 MAP - lin MAP - quad 0.441 S15 – lin 0.005 S15 - quad 0.882 Struv – lin 0.245 Struv - quad 0.521 Blend - lin 0.746 Blend - quad 0.169

F-Test Results x Site: Seed Yield

Location – Year	Form	Rate	Form × Rate	Entry
	Pr > F (p-value)			
Indian Head – 2020	ns	ns	ns	ns
Indian Head – 2021	ns	ns	ns	ns
Melfort – 2021	<0.001	0.008	<0.001	<0.001
Outlook – 2021	ns	ns	<0.001	<0.001
Redvers – 2021	ns	0.004	0.009	<0.001
Scott – 2020	ns	0.001	0.045	<0.001
Scott – 2021	ns	0.022	ns	ns
Swift Current – 2020	ns	ns	ns	ns
Swift Current – 2021	ns	ns	ns	ns
Yorkton – 2021	ns	ns	ns	ns

Seed-Placed P Form Effects on Canola Seed Yield (Non-Responsive 9/10 Sites)

Averaged Across Rates of 22, 40, & 58 lb P₂O₅/ac

Seed-Placed P Form Effects on Canola Seed Yield (Responsive 1/10 Sites)

Averaged Across Rates of 22, 40, & 58 lb P₂O₅/ac

Melfort-2021

Seed-Placed P Rate Effects on Canola Seed Yield (Non-Responsive 6/10 Sites)

Averaged Across Four Fertilizer Formulations

Seed-Placed P Rate Effects on Canola Seed Yield (Responsive 4/10 Sites)

Averaged Across Four Fertilizer Formulations

Seed-Placed P Form x Rate Effects on Canola Seed Yield at Melfort 2021

Contrast	Pr > F
MAP – lin	<0.001
MAP – quad	0.082
S15 – lin	<0.001
S15 – quad	0.035
Struv – lin	0.127
Struv – quad	0.315
Blend – lin	<0.002
Blend – quad	0.038
Struv – quad Blend – lin	0.315

Seed-Placed P Form x Rate Effects on Canola Seed Yield at Outlook 2021

Pr > F		
0.537		
0.501		
0.637		
0.067		
0.399		
0.241		
0.321		
0.036		

Seed-Placed P Form x Rate Effects on Canola Seed Yield at Redvers 2021

Seed-Placed P Form x Rate Effects on Canola Seed Yield at Scott 2020

Contrast	Pr > F	
MAP – lin	<0.001	
MAP – quad	0.339	
S15 – lin	0.001	
S15 – quad	0.222	
Struv – lin	<0.001	
Struv – quad	0.805	
Blend – lin	<0.001	
Blend – quad	0.905	

Seed-Placed P Form Effects on Canola Emergence & Final Densities (10 Site Average)

Averaged Across Rates of 22, 40, & 58 lb P₂O₅/ac

Seed-Placed P Form x Rate Effects on Spring Canola Emergence (10 Site Average)

Contrast	Pr > F	
MAP – lin	<0.001	
MAP – quad	0.603	
S15 – lin	<0.001	
S15 – quad	0.290	
Struv – lin	0.491	
Struv – quad	0.837	
Blend – lin	0.005	
Blend – quad	0.410	

Seed-Placed P Form x Rate Effects on Final Canola Plant Densities (10 Site Average)

Pr > F	
<0.001	
0.338	
<0.001	
0.196	
0.824	
0.537	
0.028	
0.807	

Seed-Placed P Form Effects on Canola Seed Yield (10 Site Average)

Averaged Across Rates of 22, 40, & 58 lb P₂O₅/ac

Seed-Placed P Form x Rate Effects on Canola Seed Yield (10 Site Average)

Contrast	Pr > F	
MAP – lin	<0.001	
MAP – quad	0.464	
S15 – lin	<0.001	
S15 – quad	0.005	
Struv – lin	<0.001	
Struv – quad	0.454	
Blend – lin	<0.001	
Blend – quad	0.059	

Relative Costs of Phosphorus Formulations & Associated Marginal Profits

Fertilizer Prices ^z	MAP	S15	Struvite	50:50 MAP:CG
\$/Mt ^z	\$1,250	\$1,250	\$1,500	\$1,375
\$/lb P ₂ O ₅ ^Y	\$0.97	\$1.39	\$2.37	\$1.47
% of MAP	100%	144%	246%	153%
Fertilizer Rate	\$/ac marginal profits Y			
0 P (control)	\$779			
22 lb P ₂ O ₅ /ac	\$795	\$798	\$753	\$766
40 lb P ₂ O ₅ /ac	\$810	\$818	\$705	\$774
58 lb P ₂ O ₅ /ac	\$807	\$770	\$705	\$803
Average	\$804	\$795	\$721	\$781

^z Fertilizer prices are based on retail quotes from Feb-3-2022 and actual P2O5 prices are adjusted for the N & S (where applicable) provided by each formulation. N & S prices are based on \$1145/Mt urea (46-0-0) & \$750/Mt ammonium sulfate (21-0-0-24), both of which were also quoted on Feb-3-2022.

 $^{^{\}rm Y}$ Marginal profits are based on the quoted fertilizer prices, actual yields, & a canola price of \$900/Mt (\$20.41/bu). These values do not reflect absolute profits as they only take into account gross revenues and P_2O_5 costs, not accounting for other variable costs or any fixed costs.

Seed Safety & Yield Response to Various Phosphorus Forms: Conclusions

- Greatest overall risk of injury in coarse textured, lower organic matter soils (i.e.
 Swift Current, Outlook, Scott), especially when dry; we often get away with a lot on finer textured, black soils but this can be unpredictable & caution is always advised
- Struvite (alone or in blends) has an undeniable seed-safety advantage essentially no negative effects w/high rates of pure struvite
- For those who have the ability, side-banding is a safe & effective option for P fertilizer & will often be advantageous if high rates are utilized. Mid-row banding only a viable option if combined with seed-placement. Avoid surface applications.
- Yield responses showed that all forms performed similarly in most cases; however, pure struvite has low solubility & may not always meet demands in the year of application if applied alone, especially in low P soils
- MAP is the most economical P option & is also effective, S15 is convenient (i.e. for storage, handling & as an S source) & effective, struvite advantageous from a seed safety and, depending on the source, environmental perspective but is expensive
- On average, P rates that match crop exports are also profitable; consider P fertilizer a long-term investment, even if we do not see consistent responses every year

15-03-2022

Influence of Potassium Fertilization on Yield & Quality of Malting Barley & CWRS Wheat (multi-site 2021)

Influence of Potassium Fertilization on Yield & Quality of Malting Barley & CWRS Wheat

Objectives: To evaluate the effects of potassium rate & placement on both yield & quality of barley & wheat on soils with typical soil test K levels

Locations: Indian Head, Outlook (lead), Prince Albert, Redvers, Swift Current, & Yorkton (2021 only)

Treatments:

1) 0 K ₂ O applied (control)	5) 9 lb K ₂ O/ac side-banded		
2) 9 lb K ₂ O/ac seed-placed	6) 18 lb K ₂ O/ac side-banded		
3) 18 lb K ₂ O/ac seed-placed	7) 27 lb K ₂ O/ac side-banded		
4) 27 lb K ₂ O/ac seed-placed	8) 18 lb K ₂ O/ac seed-placed + 36 lb K ₂ O side-banded		

Data Collection: Lodging, maturity, yield, protein, test weight, thousand kernel weight, percent plump & thin kernels (barley only)

15-03-2022

Contrasting Soil Test K₂O Supply Estimates & Fertilizer Recommendations

Trial	Western Ag PRS Cropcaster ^z		AGVISE (conventional) ^Y	
Location	Soil K ₂ O lb/ac	Fertilizer K ₂ O Rec. (lb/ac)	Soil K ₂ O lb/ac (ppm)	Fertilizer K ₂ O Rec. (lb/ac)
Outlook	95	0	337 (189)	10
Yorkton	52	26	605 (339)	10
Redvers	27	36	288 (161)	10
Indian Head	24	50	1042 (584)	10
Swift Current	231	0	660 (370)	10
Prince Albert	108	25	388 (217)	10

^z PRS analyses are for the 0-4" soil depth & wheat as a test crop – values will vary with crop type & soil moisture/precipitation estimates

Y Conventional analyses results are ammonium acetate exchangeable K for the 0-6" soil depth (values in brackets are the original ppm)

Influence of Potassium Fertilizer Rate & Placement on Wheat Yield

4 Location Average (2021)

Swift Current & Yorkton excluded from average due to high C.V. values (>15%)

15-03-2022

 Data were analyzed separately for each location & no significant treatment effects were detected in any cases

Influence of Potassium Fertilizer Rate& Placement on Wheat Grain Protein

5 Location Average (2021)

- Measurement not completed at Prince Albert
- Significant treatment effects at 1/5 locations (Indian Head); values at this site were highest in the control and lowest at the top rate of KCl, ranging from 14.7-15.1%

Influence of Potassium Fertilizer Rate & Placement on Wheat Test Weight

6 Location Average (2021)

Data were analyzed separately for each location & no significant treatment effects were detected in any cases

Influence of Potassium Fertilizer Rate & Placement on Wheat Kernel Weight

6 Location Average (2021)

• Significant treatment effects at 1/6 locations (Swift Current) with TKW values at that site ranging from 27.4-29.4 g but no consistent trends with regard to a KCl response

Influence of Potassium Fertilizer Rate & Placement on Barley Yield

4 Location Average (2021)

- Yorkton and Prince Albert excluded from average due to high C.V. values (>15%)
- Significant treatment effects at 1/6 locations (Outlook); relatively strong response to KCl fertilization at this site and generally better results with side-banding
- Observed trend in averaged results due almost entirely to the response at Outlook

Influence of Potassium Fertilizer Rate & Placement on Barley Yield (Outlook-2021)

 Emergence counts were not completed, but it is possible that weaker response to higher rates of seed-placed KCl may have been due to seedling toxicity (the site had sandy soil and low organic matter)

Influence of Potassium Fertilizer Rate & Placement on Barley Grain Protein

5 Location Average (2021)

Measurement not completed at Prince Albert

15-03-2022

- Significant ($P \le 0.10$) treatment effects at 2/5 locations (Outlook & Swift Current)
- Protein was inversely related to yield at Outlook; no meaningful trends were observed at Swift Current

Influence of Potassium Fertilizer Rate & Placement on Barley Test Weight

6 Location Average (2021)

Data were analyzed separately for each location & no significant treatment effects were detected in any cases

Influence of Potassium Fertilizer Rate & Placement on Barley Kernel Weight

6 Location Average (2021)

- Significant treatment effects at 1/6 locations (Indian Head)
- TKW values at Indian Head ranged from 41.7-42.8 g with a slight but inconsistent trend for higher values with KCl

Influence of Potassium Fertilizer Rate & Placement on Barley Plumpness

3 Location Average (2021)

- Measurements not completed at Prince Albert, Redvers, or Swift Current.
- Significant treatment effects at 1/3 locations (Indian Head)
- Plump seeds at Indian Head ranged from 97.0-97.8% values in the control amongst the lowest but benefits to KCl were small & inconsistent at best. No effect on thins.

Are Potash Responses in High K Soils Due to Potassium or Chloride?

- Results shown are the average of 13 site-years (both responsive & non-responsive)
- Yield increase with Cl was 21% overall & > 70% specifically for responsive sites

Chloride Responsive (7/19) Sites

How Does Landscape Position on a Loam Soil Affect Chloride Response?

Single Site – Oxbow Loam Near Indian Head (2019)

Influence of Potassium Fertilization on Malting Barley & CWRS Wheat: Conclusions

- Potassium is unlikely to be limiting for most western Canadian soils but responses can occur – the most severe deficiencies occur in northern, peat soils (i.e. northeast SK & northern MB) & also coarse textured, sandy soils
- Relatively little potassium is 'mined' from soils if only the grain is removed; however, fields where straw is continually removed or where forages are harvested for hay should be monitored more closely
- Responses in high K soils may be due to physiological, environmental, or disease effects; however, most field research has found such benefits to be relatively small & infrequent
- Responses to potash application can also frequently be attributed to chloride, especially for canary seed where it is often the most limiting nutrient; however, Cl responses have also been observed in other cereals
- Similar to P, the ideal placement option is in-furrow, but only for low rates
 & side-banding is also a good option if it is specifically chloride you are
 after, surface broadcast applications also work well

15-03-2022

THANK YOU

Chris Holzapfel, MSc PAg Phone: 306-695-7761

Email: cholzapfel@iharf.ca

Website: www.iharf.ca

Twitter: @CBHolz13

