Iron deficiency chlorosis in soybeans....causes and control

measures

R. Jay Goos

Professor Emeritus, NDSU

Iron in soils

- Primary minerals, "black sand"
- Secondary minerals, mostly Fe³⁺ oxides
- Fe²⁺ only with >prolonged< waterlogging

The common factor in all cases of IDC

Calcium carbonate ("lime") in the topsoil

- Where do we find lime in the topsoil?
- Glacial till-derived soils
 - Eroded knobs
 - The "low flat" affected by a high water table in the spring

• Glacial till terrain, CaCO₃ in topsoil, eroded knob and "low flat"

Eroded knob, lots of CaCO₃ in topsoil!!!

Alter Station

• Soil from eroded knob

Low flat, lots of CaCO₃ in topsoil!!!

Soil from low flat

Water wicks up from a water table in the spring, depositing CaCO₃ in the topsoil

- Where do we find lime in the topsoil?
- Lacustrine-derived soils (Red River Valley)
 - Microrelief is very subtle, often less than 1-2' elevation difference in a field

Elevation differences of ~1 foot can make a big difference

Where do we find lime in the topsoil in this field? Tiffany Tiffany Tiffany Gardena mbden Bearden Tiffany Glyndon Wyndmere Glacial Lacustine Sediments Tiffany liffan Glacial Lacustrine Sediments

Typical lacustrine soil giving chlorosis

Water wicks up from a water table in the spring, depositing CaCO₃ in

the topsoil

- Why is lime a problem?
- Buffers pH of soil around 8
 - The low point of Fe solubility
- Produces HCO₃⁻ in the soil solution
 - Interferes with iron uptake and metabolism
- Other related factors
 - Wetness (produces more HCO₃-)
 - Salinity
- Elevated nitrate in the soil

Roles of Fe in plant nutrition

• Fe-heme proteins and enzymes, Fe-S proteins

Catalase (heme)

Ferredoxin (Fe-S)

Wikipedia.org

- Iron needed for many enzyme and energytransfer reactions
- A true micronutrent, maybe 1 lb/A needed
- Can be inactivated inside the plant
- Very immobile in the plant
- Almost universal deficiency symptom: interveinal chlorosis

Colorado State Univ.

Colorado State Univ.

University of Illinois

- Fe deficiency affects the youngest tissues first
- If growing point of the plant is injured, yield is near zero
- Recovery is difficult, once chlorosis sets in

- What is the yield loss from IDC?
- We use 1-5 scale developed by Iowa State

At 5-6 trifoliolate stage, each additional unit of chlorosis decreases yield about 10 bu/A

- Control measures for IDC
- #1...variety selection
- #2...variety selection
- #3...variety selection
- Other control measures "stack" on top of a resistant variety, but can't replace a resistant variety

- What does a more resistant variety do?
 - More active Fe uptake
 - Better internal Fe transport
 - 7 genetic associations, each giving a little bit

PUBLISH ABOUT BROWSE

🔓 OPEN ACCESS 🖻 PEER-REVIEWED

RESEARCH ARTICLE

Genome-Wide Association Studies Identifies Seven Major Regions Responsible for Iron Deficiency Chlorosis in Soybean (*Glycine max*)

Sujan Mamidi, Rian K. Lee, Jay R. Goos, Phillip E. McClean 🖂

Published: September 16, 2014 • https://doi.org/10.1371/journal.pone.0107469

Plants increase Fe availability at the root by reduction, acidification, and chelation

Some varieties are good at obtaining Fe from the soil

And some are really bad at it

- So...it's easy, right??? Just plant an IDCresistant variety!!!
- I wish it was that easy...
- "The problem of IDC is as bad as it ever was....because the varieties are as bad as they ever were." (a famous soil scientist)
- What I call "The Lake Wobegon Effect"
 - "All of the children are above average"

Many seed companies need to do a LOT better

- Other control measures in perspective
- Genetics....the 7 gene associations "stack," they all give an additional increment of resistance
- Same with the other control measures, they "stack" on top of variety selection

Chlorosis score, 5-6 trifoliolate stage

Iron fertilizers in the marketplace

- FeEDDHA, higher quality (75-80% ortho-ortho)
- FeEDDHA, lower quality (50-60% ortho-ortho)
 - Need to use more
- FeEDDHSA
 - Need to use more
- Newer to the marketplace, FeHBED

FeHBED, hypothetically better than FeEDDHA

- Stability constant, 10,000x greater
- Can be made by a process with no ortho-para problems
- How does it compare to FeEDDHA?

HBED, 39.68

ortho-ortho EDDHA, 33.91

A high-quality FeHBED product performs the same as a high-quality FeEDDHA

Foliar sprays....just don't translocate

Another example of how control measures "stack" 55 TR TR+ST 50 TR+HSR TR+ST+HSR CO CO+ST 45 Yield, bu/A CO+HSR CO+ST+HSR \Diamond O \odot 🗙 GL 40 GL+ST \boxtimes GL+HSR (\cdot) \boxtimes GL+ST+HSR × 35 Goos and Johnson, 3-site average, 2000 30 2 2.5 3 3.5 1.5 Chlorosis score, 1-5 scale, 5-6 trifoliolate stage

Other control measures worth trying

- For "spotty" chlorosis (chlorotic areas within a mostly non-IDC field)
 - Variable rate chelate
 - Variety blends

 Seed treatment needs to be reevaluated now that we have better-quality chelates

- But, we need to be asking new questions about IDC, based on the concept that control measures "stack"
- Medical analogies
 - Doctors often treat the cause >and< the effects of a problem

- IDC occurs with CaCO₃ in the topsoil
 - Usually due to poor drainage
- Any degree of chlorosis present at the 5-6 trifoliolate stage means that yield was lost
- The "genes exist" for increased resistance to IDC, but it's complicated
- Additional control measures can be "stacked" on top of a resistant variety for even better control

• Thanks for the invitation to speak

