Nitrogen fertilizer additives and "The Domino Theory"

R. Jay Goos

Professor Emeritus, NDSU

Regarding nitrogen prices, maybe a song is appropriate...

At the time this presentation was made....

- With nitrogen prices so high, every aspect of the N program needs to be evaluated
 - Nitrogen rate
 - Residual nitrate
 - Prior crop credits
 - In-season testing, such as PSNT
 - Management to maximize N efficiency
 - Split/delayed application?
 - Nitrogen fertilizer additives, "Nitrogen Loss Inhibitors"?
 - Just one component of a very large decision process

- Nitrogen Loss Inhibitors (NLI)
- Urease inhibitors
 - Slow conversion of urea to ammonia
 - Can reduce ammonia loss after surface application
 - Effectiveness measured in terms of days
- Nitrification inhibitors
 - Slow conversion of ammonium to nitrate
 - Can reduce losses due to leaching and denitrification
 - Effectiveness measured in terms of weeks

- When does the use of a NLI give a yield or quality response?
- When does the use of a NLI provide an economic return?

We have to talk about....Domino Theory

 Especially with regards to nitrification inhibitors

For a chain of dominoes to fall, they all have to be there. If one is missing, it doesn't work.

"Dominoeffect". Licensed under CC BY-SA 3.0 via Wikimedia Commons

- When does the use of a NLI lead to a crop yield/quality increase????
- All the "dominoes" need to line up:
 - 1. The N rate cannot be excessive
 - If a farmer applies 160 lb of N/A, and the crop really only needed 120, a loss of 25% of the applied N won't be noticed

- When does the use of a NLI lead to a crop yield/quality increase????
- All the "dominoes" need to line up:
 - 1. The N rate cannot be excessive
 - 2. Significant nitrogen loss has to occur
 - Obviously, no significant N loss, no benefit from the NLI

The next "domino" is really important....

- When does the use of a NLI lead to a crop yield/quality increase????
- All the "dominoes" need to line up:
 - 1. The N rate cannot be excessive
 - 2. Significant nitrogen loss has to occur
 - 3. This nitrogen loss <u>has to occur during a "sweet</u> <u>spot" of time</u> when the inhibitor is functioning
 - Really important for nitrification inhibitors

- The "sweet spot" of time, an example using N-Serve...
- Consider three loss scenarios with regards to a nitrification inhibitor
 - Scenario 1....N loss event happens shortly after N application
 - Scenario 2....N loss event happens during the period of time that the inhibitor is effective
 - Scenario 3....N loss event happens after nitrification is largely complete, with or without an inhibitor

Spring application, at planting time

- When does the use of a NLI lead to a crop yield/quality increase????
- All the "dominoes" need to line up:
 - 1. The N rate cannot be excessive
 - 2. Significant nitrogen loss has to occur
 - 3. This nitrogen loss <u>has to occur during a "sweet</u> <u>spot" of time</u> when the inhibitor is functioning
 - 4. The amount of N saved by the use of an inhibitor has to be large enough to lead to a measurable difference in yield or quality

- An example where all the "dominoes lined up"
- Fall of 1996. Dow Chemical needed some soil data for a registration update for N-Serve
- We knifed in 75 lb N/A as aqua ammonia alone in early October with:
 - Nothing
 - 1 X labeled N-Serve rate
 - 3 X labeled N-Serve rate
 - 15 lb S/A as ammonium thiosulfate (ATS)
 - Then, what happened....

Band samples taken in the spring, how much mineral N (ammonium + nitrate-N) made it through such an awful winter?????

Site 1	Site 2	Average
3	4	4
7	9	8
22	31	27
37	41	39
29	36	33
	Site 1 3 7 22 37 29	Site 1 Site 2 3 4 7 9 22 31 37 41 29 36

Site 2 was planted to wheat.

Goos and Johnson, 1999

• Yield and NUE data...

Treatment		Total N uptake	Nitrogen fert.	T
	Grain yield	in grain + straw	use efficiency	
	bu/A	lb/A	%	
Control	23.4	34.6	(11	
Aqua	37.0	52.9	24	
Aqua + NP	45.0	72.2	50	
Aqua + 3X NP	45.9	72.5	50	T
Aqua + ATS	47.3	77.0	56	T
				-

Goos and Johnson, 1999

So, all of the dominoes lined up

- The N rate was not excessive
- Nitrogen loss occurred
- Nitrogen loss occurred during the "sweet spot of time" that the N-Serve and ATS were slowing nitrification (soil froze before nitrification was complete)
- A yield and quality response occurred

- For nitrification inhibitors, the most common use has been with fall N application
 - Soil freezes during "sweet spot"
 - Only protects through spring thaw
- For spring N application, the "sweet spot of time" may not get you very far into the corn growing season
- Split application better for corn

Again, spring-banded N with nitrapyrin

% nitrification of spring broadcast and incorporated urea granules 4 weeks after application. 3 sites per year. Adapted from Goos, et al. 1999.

Fertilizer	1992	1993	Average
Urea	82	79	81
Urea-			
DCD	38	58	47

Urea-DCD granules contained about 1.4% DCD by weight

- Spring or fall, don't use bogus nitrification inhibitors
 - Nitrapyrin is the industry standard
 - DCD works, IF THE RATE IS HIGH ENOUGH
- Surface-applied DCD products....the rate is probably too low
 - SuperU, 0.85% DCD by weight
 - A typical surface-applied DCD product:
 - 28% DCD, 9.71 lb/gal, 4 quarts/ton of urea
 - 0.14% DCD by weight
 - Some products even lower amounts of DCD

So, what about urease inhibitors??

- This is a much easier call
- Kinetics measured in terms of days, not weeks
- Urease inhibitor is most active when it is needed, right after application
- For urea applied to no-till, left on the surface, use an effective urease inhibitor if forecast for rain for the next 1-2 days is less than 0.5" or so

- Don't use an ineffective urease "inhibitor", or one that does not give the exact concentration of active ingredient
 - ~26-27% NBPT has been the industry standard
- For UAN, surface-banding slows volatilization, adding ATS (if you need S) slows volatilization, too.

In summary

- Crop yield response to a urease or nitrification inhibitor depends on several factors that have to happen in sequence
 - Important concept for nitrification inhibitors, as leaching or denitrification can happen weeks or months after N application
 - An easier call for urease inhibitors, as ammonia loss typically happens in the first week or two after application

- Alternatives exist for nitrification inhibitors
 Split/delayed application
- Alternatives exist for urease inhibitors
 - Timing before rain, shallow injection
 - Surface band UAN
- Use proven products