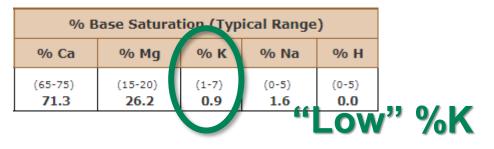
To Add or Not to Add? AGVISE Demonstration Project Update

2022 Soil Fertility Seminars

Jodi Boe Agronomist, AGVISE Laboratories

Project background

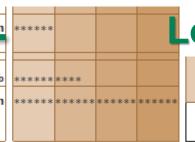
- AGVISE in a unique position to initiate and complete long-term soil fertility projects
- Four projects have been initiated in 2020 or 2021





Low pH

Soil pH	Buffer pH
0-6" 5.2 6-24" 7.9	6.4



High pH and High Calcium Carbonate

0	lsen	<u>3 ppm</u>
Phosphorus		
Carbonate(CCE)		2.1 %
	0-6"	2.86 mmho/cm
Sol. Salte		

Low soil test P

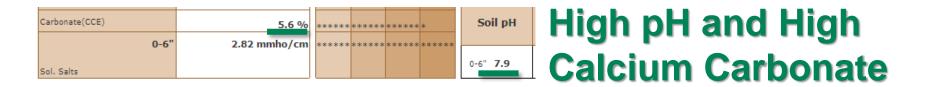
0-6" 7.8

Soil pH

7

We can't always fix a problem with the addition of something.

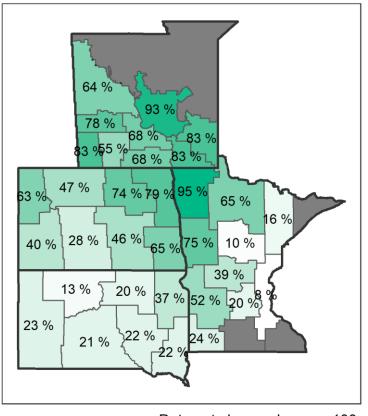
We can't always fix a problem with the addition of something.

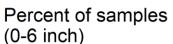

AGVISE Projects:

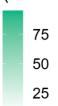
- 1. Long-term elemental sulfur project (high soil pH)
- 2. Long-term potassium project (%K?????)

Sometimes we can fix a problem with the addition of something.

- 3. Long-term phosphorus project (low soil-test P)
- 4. Long-term liming project (low soil pH)

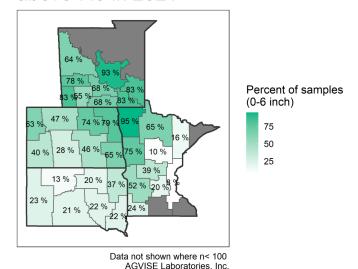






Soil samples with soil pH above 7.3 in 2021

Data not shown where n< 100 AGVISE Laboratories, Inc.



- Soils in the Northern
 Plains and Canadian
 Prairies often have soils
 with high pH (>7.3)
 - Soils with free calcium carbonate (CaCO₃) will have a pH buffered around 8

Soil samples with soil pH above 7.3 in 2021

 Elemental sulfur often marketed as an "easy solution" to reduce pH

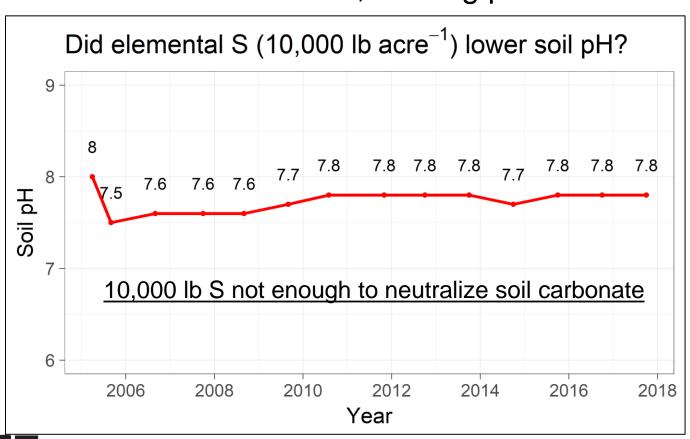
The science behind lowering pH with elemental sulfur

- High pH soils have "free lime" (CaCO₃)
- Free lime must be neutralized before pH can be reduced
- When S⁰ is applied to soil, it is oxidized by soil bacteria, forming sulfuric acid

- Sulfuric acid produces H⁺ ions, which can neutralize free lime in the soil
- Any other form of fertilizer sulfur (e.g. gypsum, AMS) is the sulfate form of sulfur and CAN NOT neutralize free lime

Soil samples with calcium carbonate above 5.0 % CCE in 2021

Percent of samples (0-6 inch)



Data not shown where n< 100 AGVISE Laboratories, Inc.

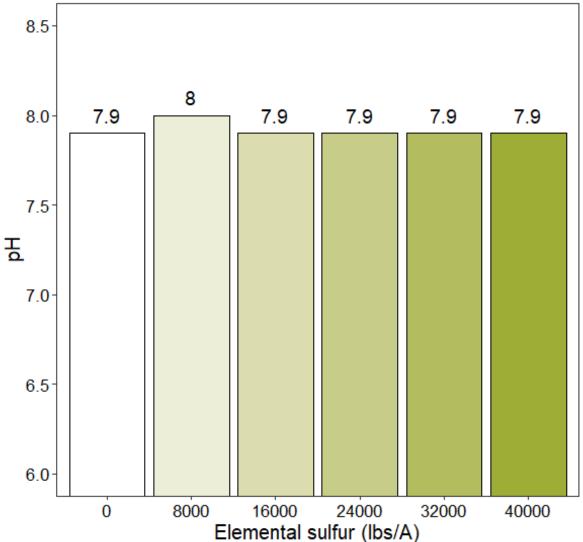
I only need about 100 lb/A elemental sulfur, right?

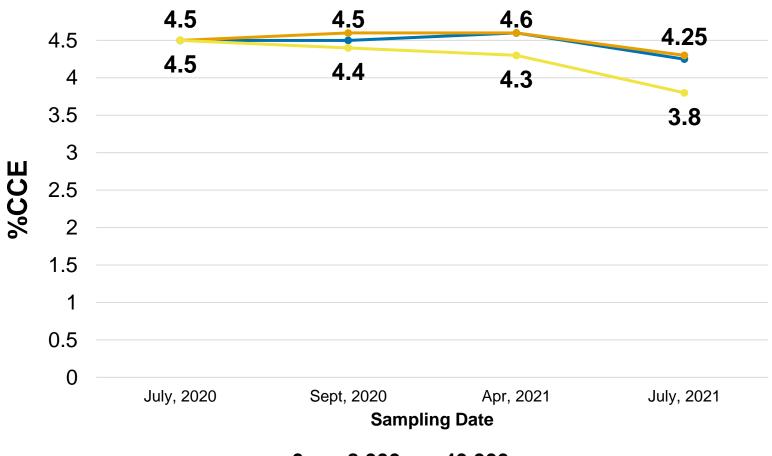
AGVISE Demonstration 2005-2017 Soil had 2.5% CCE, starting pH was 8

Again starting in 2020, with higher rates!

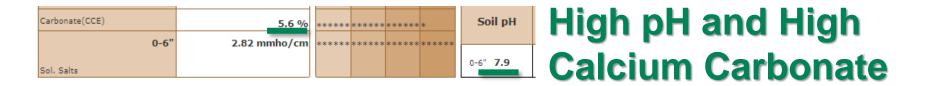
Objective: evaluate long-term effectiveness of elemental S as a soil amendment to reduce soil pH on a calcareous Northern Plains soil

Site: Northwood, ND Bearden silty clay loam average soil pH: 8.0, average CCE: 4.5%


Treatments: 0 to 40,000 lbs/A elemental sulfur, tilled to 6" after application



Effect of elemental sulfur rate on soil pH one year after application



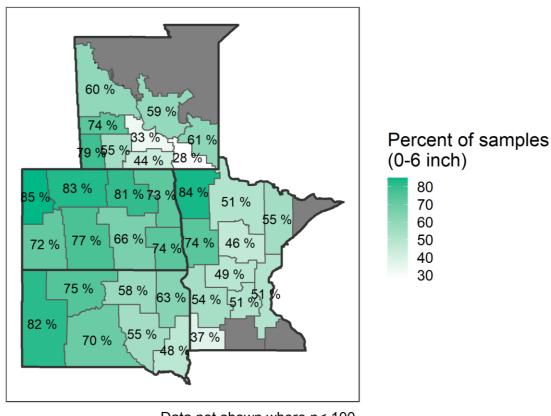
Effect of elemental sulfur on %CCE over one year

There is no quick, easy solution to reducing soil pH in the northern Great Plains

Practical alternatives to manage soils with high pH

- For IDC (high pH soils with carbonates, salinity)
 use IDC tolerant soybean varieties, plant in wide
 rows, use Fe-EDDHA
- Apply more P fertilizer in bands
- Apply higher rates of P fertilizer
- Building P soil test levels not easy in high pH soils, but it is much less expensive than trying to reduce the soil pH

P	Olsen hosphorus	3 ррт	*****				Lo	w s	oil	test	P
c	arbonate(CCE)	2.1 %	*****	***			S	oil pH			
	0-6"	2.86 mmho/cm	*****	*****	*****	*****	*				
S	ol. Salts						0-6	7.8			



- Soils in the Northern Plains and Canadian Prairies often have soils with high pH (>7.3)
- Soil pH controls availability of plant nutrients (especially phosphorus)
- Building soil-test P in high pH soils requires more P than building in neutral pH soils
- P is fixed by calcium in the soil; Ca is abundant in most of the soils in our region

Soil samples with soil test phosphorus below 15 ppm (Olsen P) in 2021

Data not shown where n< 100 AGVISE Laboratories, Inc.

AGVISE long-term phosphorus project

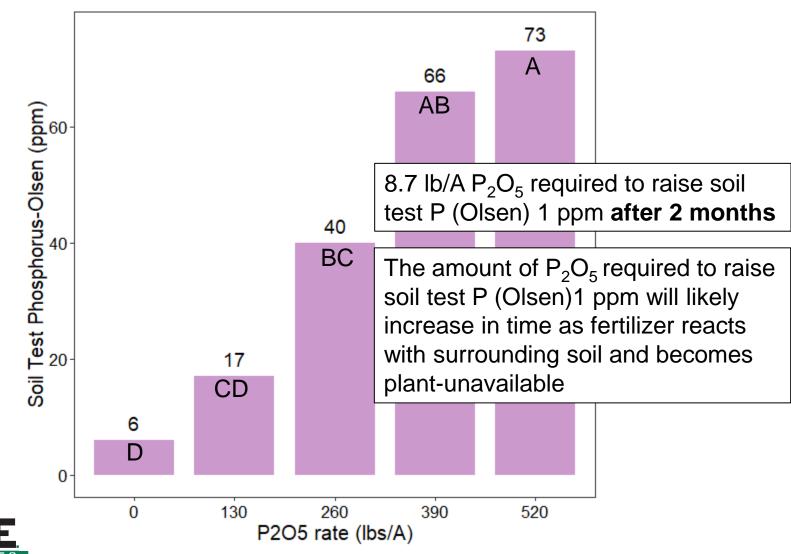
Objective: Determine rate of P needed to build soil test P levels; monitor over time

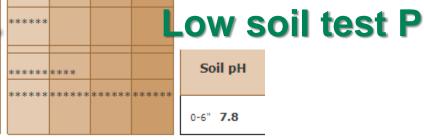
Site: Northwood, ND Bearden silty clay loam

soil pH: 7.9

average CCE: 4.5%

average initial soil test P: 4 ppm


Treatments: 0 to 520 lbs/A P_2O_5 (in MAP form), tilled to 6" after application



Trial Initiated: September 1, 2021 **Soil Sampled:** October 29, 2021

Effect of MAP fertilizer on soil-test P (ppm) two months after application

	Olsen	3 ppm
Phosphorus	Olsell	3 ррш
Carbonate(CCE)		2.10/
Carbonate(CCE)		2.1 %
	0-6"	2.86 mmho/cm
Sol. Salts		

It is possible to build soil test P levels in high pH soils, but requires a lot of P fertilizer

Can I increase soil %K?

% E							
% Ca	% Ca % Mg % K % Na % H						
(65-75) 71.3	(15-20) 26.2	(1-7) 0.9	(0-5) 1.6	(0-5) 0.0			
	'		66	Low	′" %K		

Can I increase soil %K? Should I worry about increasing %K?

% E					
% Ca	% Mg	% K	% Na	% H	
(65-75) 71.3	(15-20) 26.2	(1-7) 0.9	(0-5) 1.6	(0-5) 0.0	
			66	Low	/" %K

Can I increase soil %K? Should I worry about increasing %K? Should I acknowledge %K?

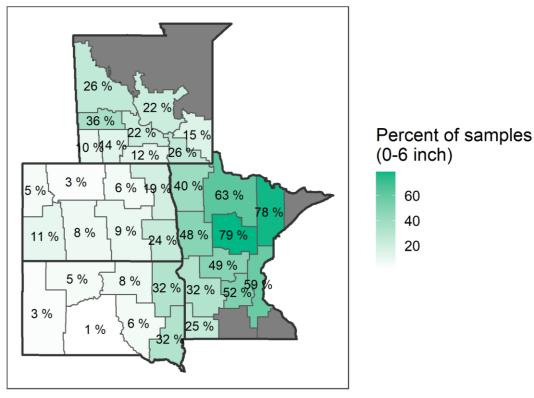
% E					
% Ca	% Mg	% K	% Na	% H	
(65-75) 71.3	(15-20) 26.2	(1-7) 0.9	(0-5) 1.6	(0-5) 0.0	
1			66	Low	/" %K

What is %K? Sufficiency? Base Cation Saturation Ratio (BCSR)?

% Base Saturation (Typical Range)							
% Ca							
(65-75) 71.3	(15-20) 26.2	(1-7) 0.9	(0-5) 1.6	(0-5) 0.0			

Concentrations of soil Ca, Mg, and K are interpreted two different ways:

- the scientifically-backed way, using sufficiency level (e.g. soil-test K ppm shows soil is above or below a critical level)
- the scientifically-debunked way, using "ideal" base cation saturation ratios (BCSR) (e.g. fertilizing to push base cation % into arbitrary "ideal" ranges that were conceived in the 1940s)


Should I acknowledge %K?

 Many soils in the northern Great Plains have high levels of background soil-test K ppm levels.

Should I acknowledge %K?

Soil samples with soil test potassium below 150 ppm in 2021

Data not shown where n< 100 AGVISE Laboratories, Inc.



Should I acknowledge %K?

- Many soils in the northern Great Plains have high levels of background soil-test K ppm levels.
- Concept of "ideal" BCSRs still floating around, despite no replicated research to support it
- Soils with varying %K values (outside of "ideal" range) grow crops without K deficiency
- Soil test sufficiency level is important to focus on, not % of specific cations

How is %K calculated, anyway?

$$\rightarrow \frac{211 \, ppm \, K}{390 \, \frac{meq}{100g \, soil}} = 0.54 \, \frac{meq}{100g \, soil}$$

$$\frac{0.54}{47.3} = 0.011 (1.1 \% K)$$

Hypothetically, %K = percentage of CEC occupied by potassium cations

In reality, %K reported in the Northern Great Plains is

lower than "real" %K

Soil pH	Buffer pH	Cation Exchange	% E	% Base Saturation (Typical Range)					
Sui pri		Capacity	% Ca	% Mg	% K	% Na	% H		
0-6" 7.8		47.3 meq	(65-75) 69.9	(15-20) 27.2	(1-7) 1.1	(0-5) 1.8	(0-5) 0.0		

General Comments: Soil texture is not estimated on high pH soils.

AGVISE long-term potassium project

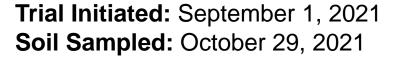
Objective: determine the amount of potash fertilizer required to raise imaginary %K in soil from 1.0% to 8.0%

Site: Northwood, ND Bearden silty clay loam

soil pH 7.9

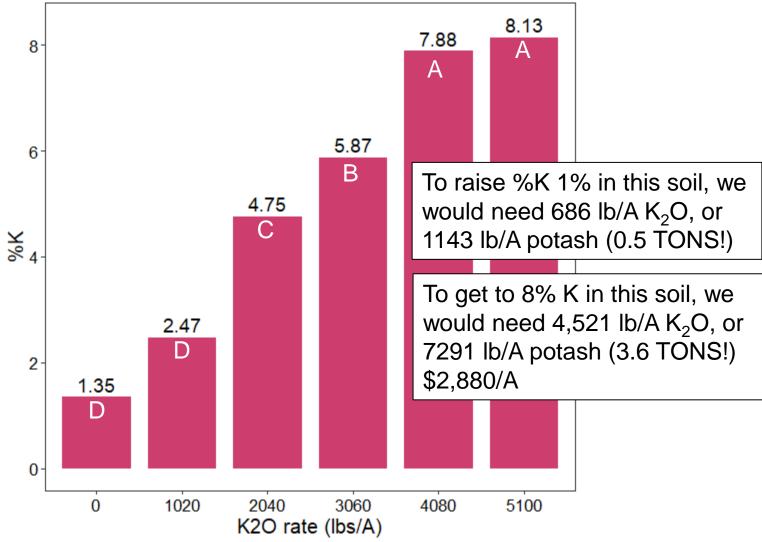
average initial STK: 226 ppm

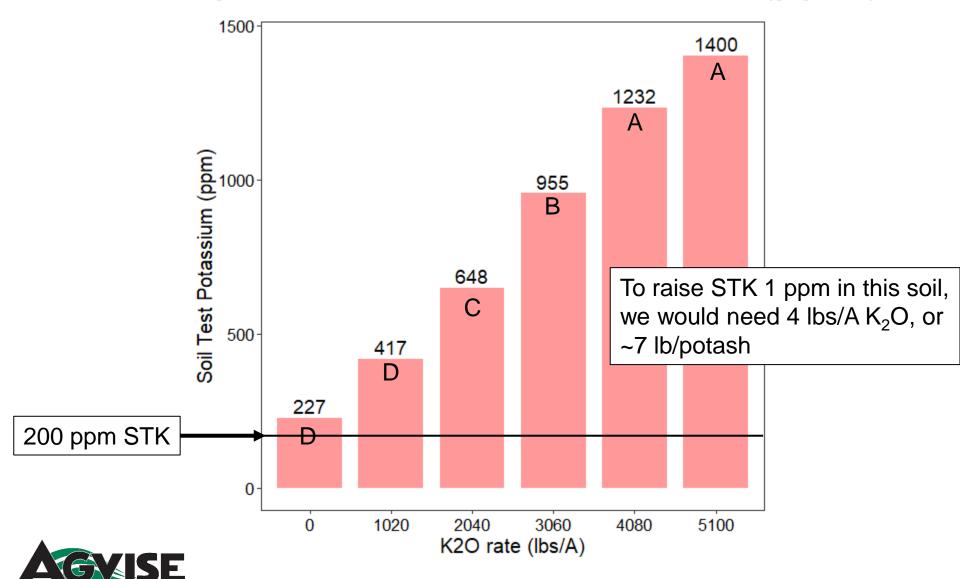
average initial %K: 1.1% average initial %Ca: 70%


average initial CCE: 4.5%

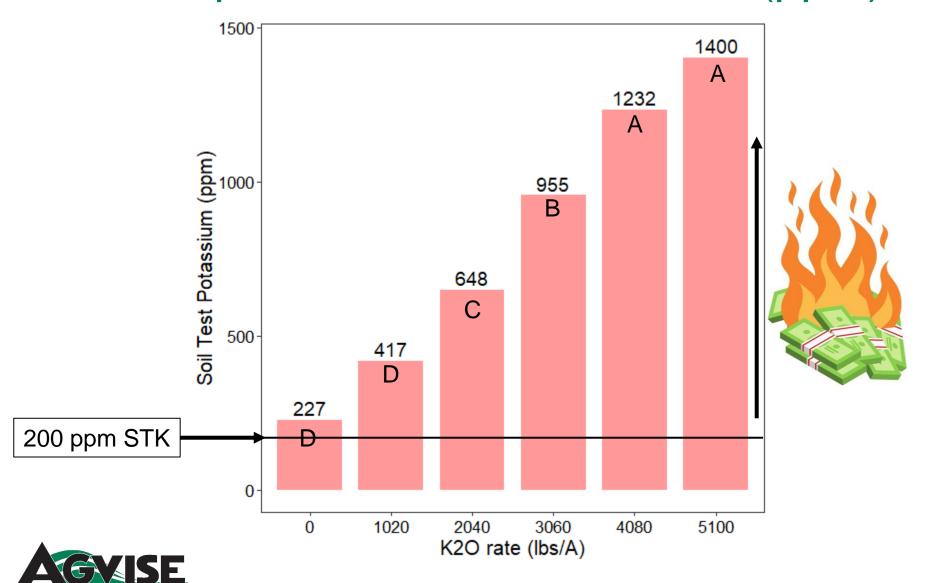
Treatments: 0 to 5,100 lbs/A

K2O (as potash), tilled to 6"


after application



Effect of potash rate on soil %K



Effect of potash rate on soil-test K (ppm)

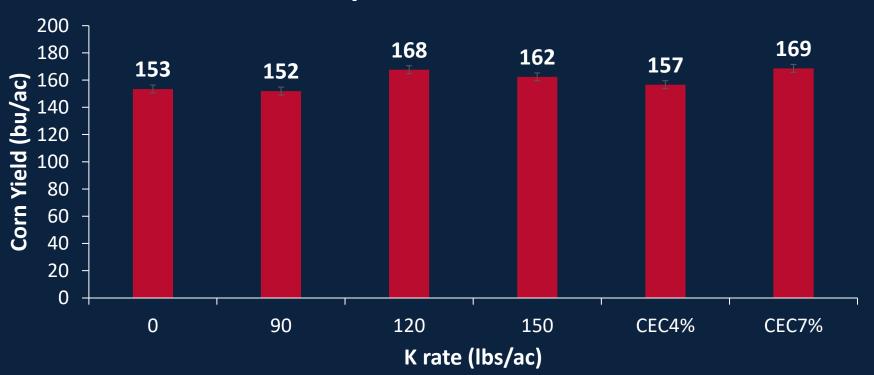
Effect of potash rate on soil-test K (ppm)

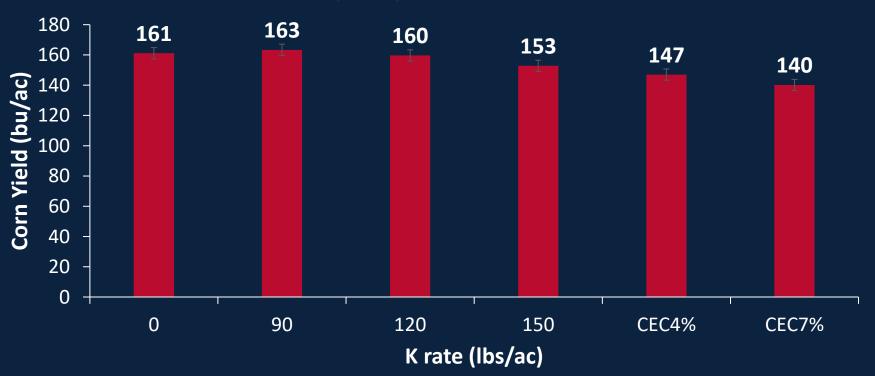
What about yield?

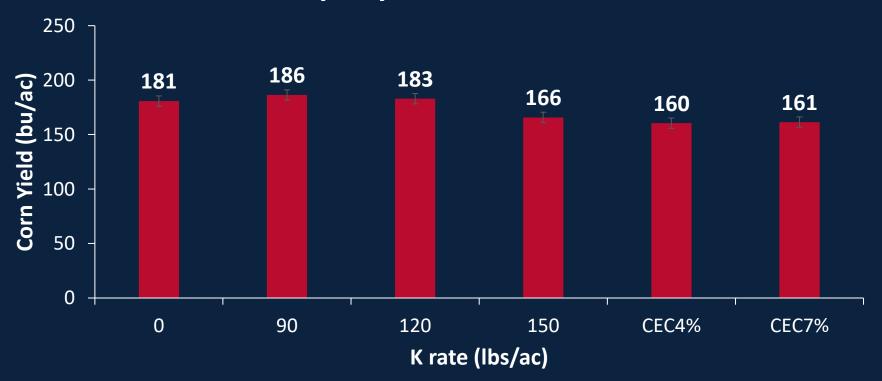
- Remember, potash is potassium chloride, or KCI, 0-0-60-50CI
- Univ. of MN researchers have found that high rates of KCI fertilizer can decrease soybean yields and occasionally corn yields when over 200 lb/acre KCI (0-0-60) is applied
 - Excessive chloride has been implicated as the cause of soybean yield reduction
 - Strategically apply potassium chloride in a cornsoybean rotation. Apply the full two-year rate prior to corn or split for both years
 - Do not apply more than 200 lb/acre KCl before corn or 100 lb/acre KCl before soybean


What about yield?

- The following slides are corn yield data from the 2021 growing season from Dr. Jason Clark at SDSU
- The goal was to measure yield response to differing rates of KCl fertilizer with differing soiltest K level
 - Rates: 0, 90, 120, 150 lbs K₂O plus two site-specific rates to reach %Ksat of 4% and 7%
 - Sites had initial soil-test K levels ranging from 120 to 306 ppm




Yankton: Clay Loam, STK: 306, %Ksat: 4%


Hutchinson: Clay loam, STK: 167, %Ksat: 2%

Hutchinson: Sandy clay loam, STK: 150, %Ksat: 2%

Garretson: Silty clay loam, STK: 197, %Ksat: 2%

Southshore: Clay loam, STK: 120, %Ksat: 2%

Summary: 2021

- No site above 120 ppm K responded to K fertilization
- Fertilizing to base saturation of 4 or 7%
 - Reduced yield or at best maintained yield

Can I increase soil %K? Should I worry about increasing %K? Should I acknowledge %K?

% Base Saturation (Typical Range)						
% Ca	% Mg	% K	% Na	% H		
(65-75)	(15-20)	(1-7)	(0-5)	(0-5)		
71.3	26.2	0.9	1.6	0.0		0/
			•	LOW	<i> "</i>	%

Using base cation saturation ratios to make soil fertility plans is not a good idea.

Good way to spend a lot of money with no yield increase

Potassium fertility basics

Soil test category	Ammonium acetate K (ppm)		
Very low (probability of getting a yield response to applied potassium >80%)	<40		
Low	41-80		
Medium	81-120		
High	121-160		
Very high (VH - Probability of getting a yield response to applied nutrient <10%)	>160 (critical level)		

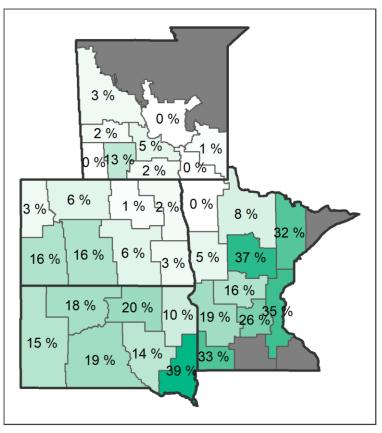
- Most soils with a loam soil texture or heavier have high soil test K.
 Sandy soils usually test low in K and are prone to leaching (difficult to build soil test K on sandy soil).
- Potassium deficiency can develop on high testing soils if soil is compacted or if soil contains high proportion of smectitic clays
- Potassium deficiency is one of the first nutrient problems to show up when water is limiting. Tissue analysis is helpful.

When should I fertilize with potash?

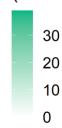
- Soil test K below 150 ppm (zone or grid sample)
- Soil test K below 200 ppm (composite sample/variable)
- Tissue K historically below sufficiency range
- Compaction restricting root growth (confirmed with tissue analysis)
- Replicated strip trials showing significant yield increase
- Low soil chloride (small grains may require Cl from KCl)

Is it possible to increase soil pH on the Northern Plains?

Soil pH	Buffer pH		
0-6" 5.2 6-24" 7.9	6.4		


Soil acidity (pH <6.0) an emerging soil fertility issue on the Northern Plains

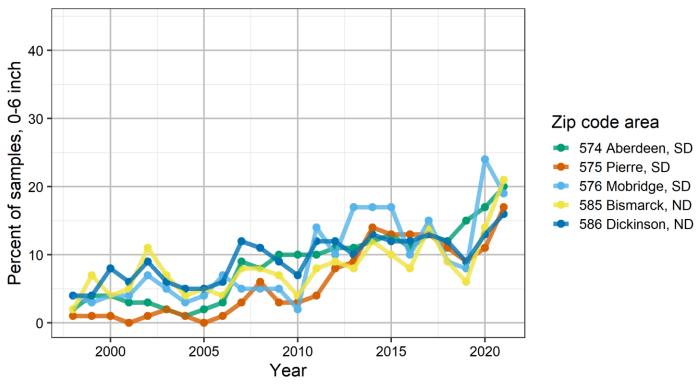
- Soil pH on N. Plains is generally high, thanks to soil parent material and climate
- Long-term use of nitrogen, adoption of long-term no-till, and zone/grid soil sampling have contributed to increased frequency of acid soils
- Soil pH controls availability of plant nutrients
 - Low pH decreases phosphorus availability and increases availability of plant toxic aluminum
 - Soil pH 5.0-5.5, aluminum toxicity
 - Soil pH 6.0-6.6, reduced legume N fixation



Soil acidity (pH <6.0) an emerging soil fertility issue on the Northern Plains

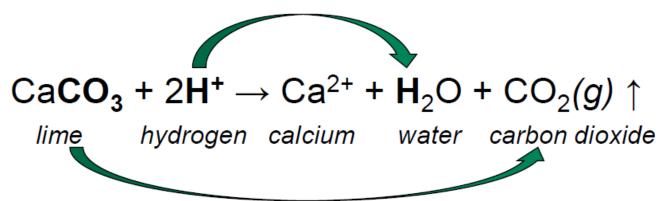
Soil samples with soil pH below 6.0 in 2021

Percent of samples (0-6 inch)



Data not shown where n< 100 AGVISE Laboratories, Inc.

Managing soil acidity is an emerging soil fertility issue in North Dakota


Soil pH trend (pH < 6 1:1) across the northern Great Plains

Data not shown where n< 100 AGVISE Laboratories, Northwood, ND

Long-term solution to acid soils: liming

- Lime (MgCO₃ or CaCO₃) reacts with hydrogen in the soil solution, reducing H concentration, increasing soil pH
- Carbonate (CO₃) is important, as this is the part of the material that neutralizes acidity
- In eastern Corn Belt, lime is applied every 3 to 6 years
- Very limited sources of lime in Northern Great Plains
- Unknown how frequent liming will need to be in our climate regime or cropping systems

AGVISE Western ND Lime Project

Objective: determine the amount of surface-applied lime required to raise pH to 6.5 and determine how long the effect lasts

Site: Golden Valley, ND Grail silty clay loam average initial soil pH:

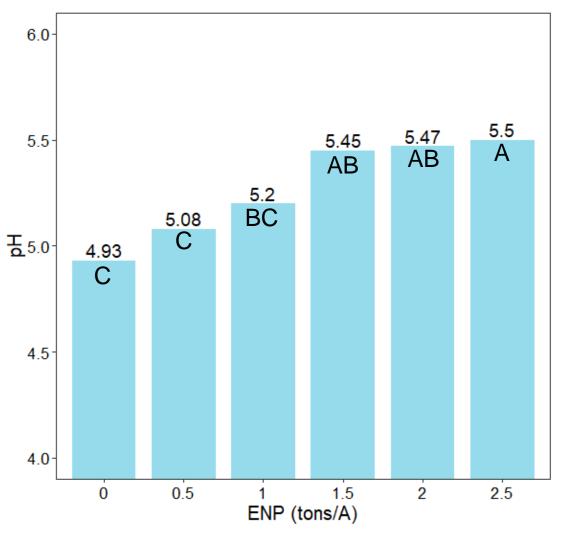
• 0-3": 5.2

• 3-6": 5.4

average initial buffer pH:

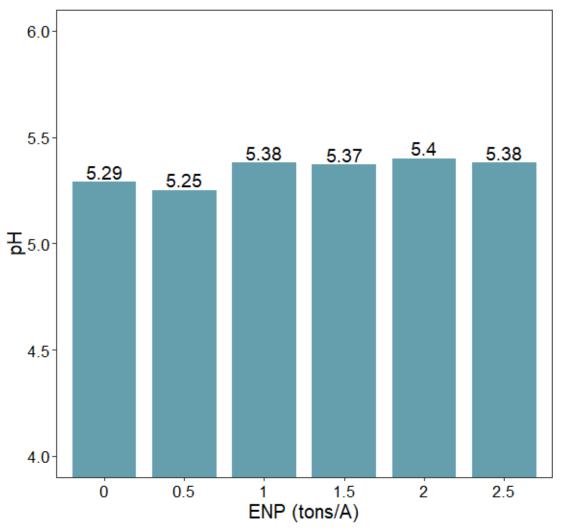
0-3": 6.33-6": 6.4

Treatments: 0 to 2.5 tons/A ENP, surface-applied (lime product had 1,782 lbs ENP/ton)



Trial Initiated: May 5, 2021

Soil Sampled: August 24, 2021



Effect of lime on soil pH, 3.5 months after application, 0-3" depth

Effect of lime on soil pH, 3.5 months after application, 3-6" depth

Alternatives to lime application

- Higher seed-placed P rate (40 lb P₂O₅/acre)
 - Phosphate binds with soluble aluminum (P fixation)
 - Seedlings establish, roots reach higher subsoil pH
 - Less effective if subsoil pH also low
- Utilize aluminum-tolerant crops and varieties
 - Few aluminum-tolerant varieties developed for northern Great Plains
 - Legumes, especially alfalfa, are most sensitive to low soil pH

Is it possible to increase soil pH on the Northern Plains?

Low pH

Soil pH	Buffer pH	
0-6" 5.2 6-24" 7.9	6.4	

Adding lime (CO₃) to soils with low pH is the only way to increase pH and stop aluminum toxicity. Still much work to be done on frequency of applications, best sources, economics, etc.

We can't always fix a problem with the addition of something.

AGVISE Projects:

- 1. Long-term elemental sulfur project (high soil pH)
- 2. Long-term potassium project (%K?????)

Sometimes we can fix a problem with the addition of something.

- 3. Long-term phosphorus project (low soil-test P)
- 4. Long-term liming project (low soil pH)

We look forward to continuing these projects in 2022!

Thank you!

Are there any questions?

