

Manure Happens: Take credit and cover it up

Melissa Wilson, Ph.D. Assistant Professor & Extension Specialist University of Minnesota

January 2020

Agenda

- Manure: It's complicated
- On-going research projects
 - Taking credit for nutrients in manure
 - Covering it up cover crops for fall manure application

Taking credit for manure application: It's complicated

What kind of nutrient value can we expect from manure?

Manure application is complicated

1. Nutrient ratio is fixed

Nutrient ratio is fixed in manure

- Scenario:
 - -Corn grain
 - Goal: 200 Bu/acre
 - -Nutrient needs: 200-47-52
 - Poultry litter at 5 tons/acre into no-till
 - Nutrient content:
 - 151-426-421

2. Nutrient Content Varies by Animal Type

Nutrient Content Varies by Animal Type

Manure application is complicated

3. Nutrient availability is difficult to estimate

Why aren't all nutrients available?

- Inorganic forms are immediately plant available
 - Examples of inorganic N = nitrate and ammonium
- Organic forms (nutrients bound to carbon) are not plant available
 - Must be broken down and released by microbes

Manure application is complicated

3. Nutrient availability is difficult to estimate

University of Minnesota	Guidelines for Manure
--------------------------------	------------------------------

Livestock Type	% Total N Available
Dairy year 1	55
Dairy year 2	25
Swine year 1	80
Swine year 2	15

Manure N Distribution

Percent of Total N

Manure P Distribution

Percent of phosphorus found in various forms

Manure application is complicated

4. Nutrient content is not uniform

Variability declines when manure is tested and agitated

% variation in measured value from actual value

On-going research

Field Experiments

- 2 locations with two sites each
- 6 types of manure
 - Applied all at N-based rate of 140 pounds of plant available N per acre
- Fertilizers (to develop response curve)
- Total treatments: 16

Nutrient Rate Details

Year 1	Years 2 – 4
Full N rate: 140 lbs N/acre	Full N rate: 195 lbs N/acre
Manures applied at full	Only K and S fertilizers
available N rate per acre	applied
(6 plots)	(6 plots)
N fertilizers applied:	N fertilizers applied:
N rate curve + full P and K	N rate curve + full P and K
(5 plots)	(5 plots)
P fertilizers applied -	P fertilizers applied:
P rate curve + full N and K	P rate curve + full N and K
(5 plots)	(5 plots)

Manure nutrient availability

Manure nutrient availability

Manure nutrient availability

Picture taken June 18, 2018 at SROC

Funded by MN Ag Fertilizer Research and Education Counci

June 28, 2018 at SWROC

Rep 2

Rep 1

Funded by MN Ag Fertilizer Research and Education Counci

July 26, 2018 at SWROC

Rep 2

SROC CORN YIELDS 2018 – 2019

• Average yields for 1st year of rotation (2 sites)

Total N Uptake – SROC 2018

Total P Uptake – SROC 2018

SROC Corn Yields 2019 – Site 1

2nd year of rotation (no manure applied)

SWROC Corn Yields 2018 – 2019

Average yields for 1st year of rotation (2 sites)

SWROC Corn Yields 2019 – Site 1

2nd year of rotation (no manure applied)

Average Yields For First-Year Manure (4 site-years) Fertilizer N

Average Yields For Second-Year Manure (2 site-years)

Take Home Messages

- After two **VERY WET** years:
 - -First-year yields with manure were lower than expected
 - Lower mineralization than expected?
 - Second-year yields with manure were higher than no-N fertilizer controls, except with swine manure
- Where did the N and P go?
 - Still need to evaluate N and P plant uptake as well as in-season soil samples

Covering it up: Cover crops with fall manure application

Slurry Seeding in Michigan

Slurry Seeding in Michigan

- Combine these things in one pass:
 - -Tillage
 - -Manure application
 - -Cover crop seeding

Slurry Seeding

- Findings:
 - -Manure decreases germination

Forage Rape

Orchard Grass

Slurry Seeding

- "What doesn't kill you..."
- Findings:
 - Overall biomass of manure slurry seeded crops was often higher than drilled covers

- Seeded: Sep 1
- Harvested: Dec 5

Slurry Seeding in Michigan

- Need to use low disturbance applicator
 - -Some form of intank agitation
- What crops?
 - Haven't had luck with red clover

Liquid Manure + Cover Crops

Liquid manure + Cover Crops Project

- Details:
 - Planted rye CC after harvest then injected liquid manure
 - -Terminated rye in spring
 - Measured soil nitrate in top 24" of soil and in rye
- -Harvested following corn grain or silage next fall
 - Measured corn yield and nitrogen uptake
- -2 crop years

Rye biomass production

Double Disks

Knife Injection

Sweep Injection

 Narrow sweeps minimized disturbance of surface soil but allowed manure infiltration

Spring soil 24" Nitrate (NO₃-N)

Cover Crop: 123 lbs. NO_3 -N/AcreDifference: 79 lbs.No Cover:202 lbs. NO_3 -N/Acre NO_3 -N/Acre

Grain Yield at 15% Moisture

Cover Crop: 197.5 bu/acre No Cover: 199.4 bu/acre

Silage Yield at 65% Moisture

Cover Crop: 20.7 Tons/acre No Cover: 20.8 Tons/acre

Take Home Messages

- Injection equipment matters!
 - Knives and sweeps seemed to minimize surface disturbance
- Winter rye conserves manure nitrogen and can potentially reduce N losses
- On average, corn yields were not impacted following cover crops and manure
 - Any given field in a year could see a yield increase or decrease, however

New Research

- Cover crop seeding methods + 2 manure application timings
 - Interseeding vs drilling after harvest
 - Early vs late applied manure

Thanks! Questions?

Contact Info: mlw@umn.edu | Follow me on **twitter3**: @ManureProf

UNIVERSITY OF MINNESOTA Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.