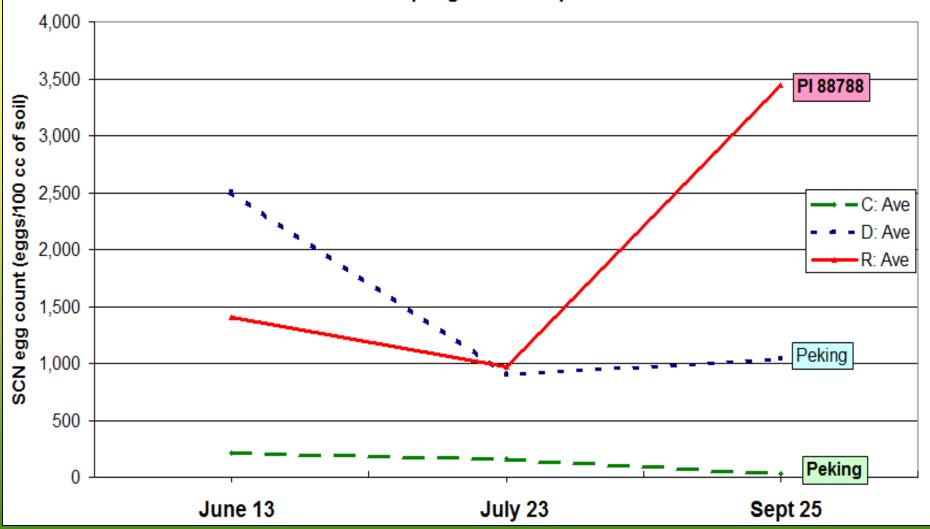

AGVISE Project Update

- SCN Changes in Season/Resistance
- Tile/Salinity Tracking Project
- Saline-Sodic Soil amendment Project
- Soil Sampling Lubricant Evaluation

Annual SCN Summary for 2019



		SCN	Sample	Date	
Location ID	SCN Type	June 13	July 23	Sept 25	SCN Sampling Project
C1	Peking	750	250	50	Time of Sampling
C2	Peking	0	0	50	
C3	Peking	100	50	50	
C4	Peking	50	150	0	
C5	Peking	150	350	0	
C: Ave	Peking	210	160	30	
D1	Peking	2,150	700	100	
D2	Peking	3,050	1,850	750	
D3	Peking	2,450	550	1,300	
D4	Peking	1,250	900	250	
D5	Peking	3,650	500	2,800	
D: Ave	Peking	2,510	900	1,040	
R1	PI 88788	3,350	350	2,850	
R2	PI 88788	1,900	200	1,950	
R3	PI 88788	450	350	2,550	
R4	PI 88788	1,100	1,000	2,050	
R5	PI 88788	200	2,950	7,800	
R: Ave	PI 88788	1,400	970	3,440	

SCN Sampling Project: Time of Sampling

SCN Sampling Date Comparison

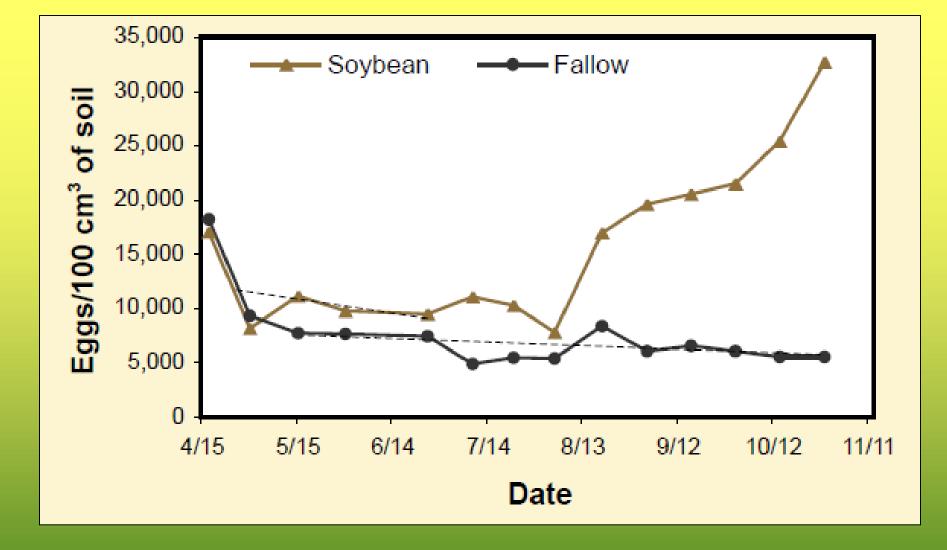


Fig. 6. Seasonal change of SCN egg population planted with susceptible soybean and in fallow in 2008. Soybean Cyst Nematode Management Guide: U of MN Extension https://extension.umn.edu/soybean-pest-management/soybean-cyst-nematode-management-guide

SCN Project: PI 88788 Resistance

Nearly all, > 95%, SCN resistant varieties use the PI 88788 trait.

PI 88788 has been the main source of resistance for over 20 years.

<u>Currently, SCN reproduction is common and widespread</u> in Iowa and many states of the Midwest <u>on PI88788 varieties</u>.

*Dr. Greg Tylka, ISU

SCN Project: PI 88788 Resistance

HG Type testing:

Test of a SCN population, to see if it has overcome a SCN resistance trait.

It is a greenhouse grow-out test using various susceptible and non-susceptible soybean varieties.

HG type classification												
Indicator lines	0	1	2	3	4	5	6	7				
1. PI 548402 (Peking)		+										
2. PI 88788			+									
3. PI 90763				+								
4. PI 437654 CystX®					+							
5. PI 209332						+						
6. PI 89772							+					
7. PI 548316 (Cloud)								+				

SCN Sampling Project

Take Home Message

If **<u>initial SCN testing</u>** to see if SCN is a present in a field, then OK to sample throughout growing season.

If <u>monitoring SCN populations</u>, then best to sample later in season when SCN are at their highest levels.

If areas with **long history of SCN**, then the PI88788 is probably losing its' effectiveness.

LANTELES XP

NUBOTA DIESEL 4x4

Richard Jenny Agronomist, CCA richardj@agvise.com Benson, MN

Wintex 1000

44

(<u>((</u>)

Tile Drainage Tile - Salinity Update 2002- 2019

Location: 35 Miles SW Grand Forks, ND Sandy loam to loam texture pH 7.9-8.2 Carbonates 3-6% %OM 4.0-5.5%

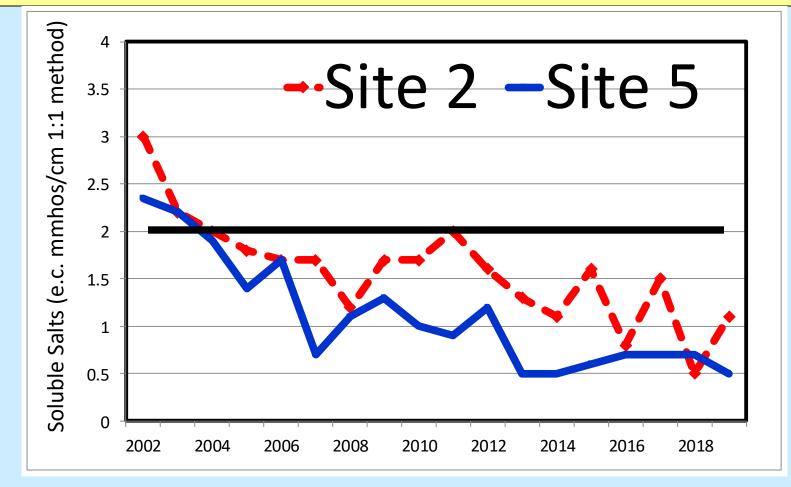
Soil Issues

High Salinity (>2.0) High water table Surface drainage needed work <u>Crop Issues</u> Soybeans, drybeans, (even corn)

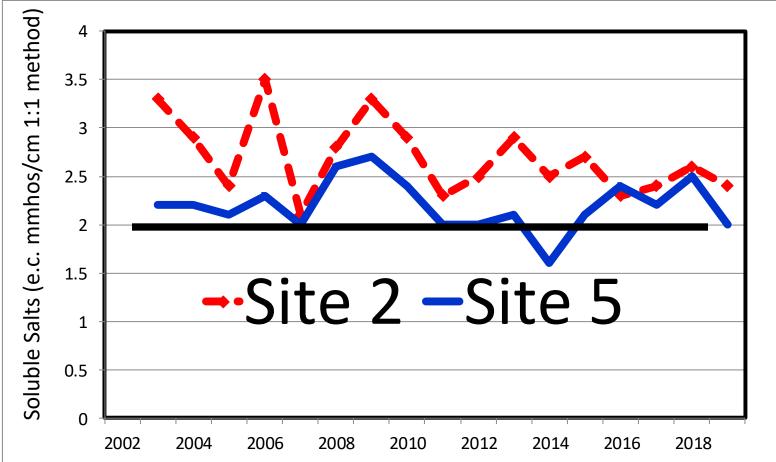
10 GPS Sampling Sites

2003 Soybeans

2008 Corn


A DESCRIPTION OF THE PARTY AND A DESCRIPTION OF THE PARTY AND

2008 – Very good yield One of Grady's best fields!


PONTA PORTES AND A STATE OF MALE AND A STATE OF

Top Soil Salinity Tile Drained Feld (2002 – 2019)

Subsoil Salinity Tile Drained Feld (2002 – 2019)

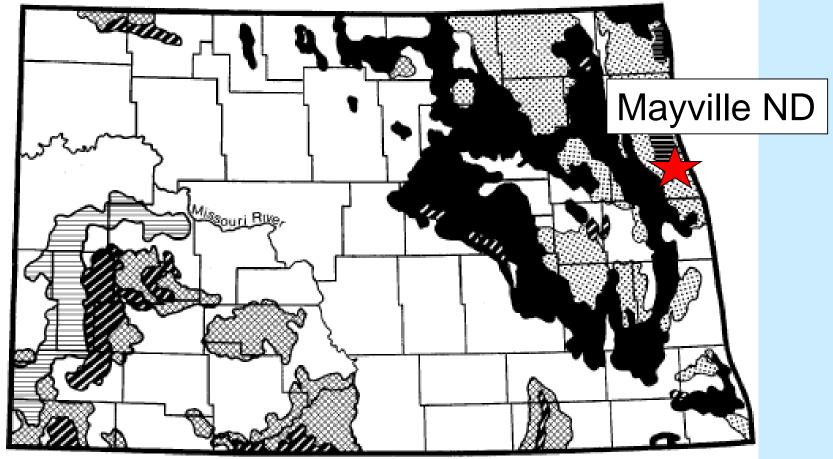
Monthly Rainfall (Grand Forks) 2002 – 2018 April -October

	5 year Ave	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	2019
April	1.0	.2	.4	.9	.6	.5	1.3	1.0	2.9	1.2	.7	2.6	.5	1.4	.8	.8	1.4
May	2.7	4.4	2.8	2.4	5.1	.9	2.1	4.8	3.0	1.6	4.5	2.0	3.7	3.8	.8	1.7	1.7
Jun	3.5	.8	7.0	.6	4.5	3.0	3.8	3.5	3.0	3.0	3.1	6.0	2.4	3.1	6.9	5.1	2.5
July	3.2	2.2	.7	.9	1.7	3.6	1.8	2.1	3.7	3.1	.9	1.8	3.2	5.2	1.0	2.9	4.2
Aug	2.9	2.9	5.0	5.4	2.8	3.0	2.7	1.7	2.2	2.2	1.1	3.7	2.5	3.6	.7	1.3	4.4
Sep	2.0	3.3	1.4	2.8	1.0	3.8	1.3	5.7	1.2	.1	2.5	1.5	.4	5.3	4.2	2.5	9.0
Oct	2.0	2.1	2.5	1.2	3.0	3.9	3.5	2.1	.5	2.9	2.8	.5	1.2	1.7	.1	2.9	3.6
Total	17.2	15.9	19.9	14.1	18.9	18.7	16.6	20.7	16.3	13.9	15.5	18.1	13.9	24.1	14.5	17.2	26.8

Red number indicates a month or year with rainfall higher than 5 year average

Tile Drainage – Salinity Results Sandy Loam – Loam Soil

- Topsoil salt levels decreased in years with high rainfall (April, May, September, October)
- Topsoil salts actually increased in dry years
- Subsoil salinity levels are decreasing very slowly
- Surface drainage was critical along with tile
- Salinity improvement was pretty fast due to lighter soil texture (sandy loam)
- Most crops now produce good yields


What should you expect for salinity changes on Heavier Clay Loam Soils?

- Topsoil salt levels will decrease, but it will take a lot longer (maybe decades?)
- Many benefits happen faster than changes in salinity
 - Lower water table
 - Earlier planting date (more plant water use)
 - Better trafficability (less compaction)
 - Lower N losses
 - Many other benefits!!!

Saline/Sodic Soil Soil Amendment Project 2009 – 2019

- Tile Drained 2007
 - Most Acres : Low salt and low sodium
 - Some acres: Saline (High salt) and low sodium
 - Some acres: Saline (High salts) and Sodic (High sodium)

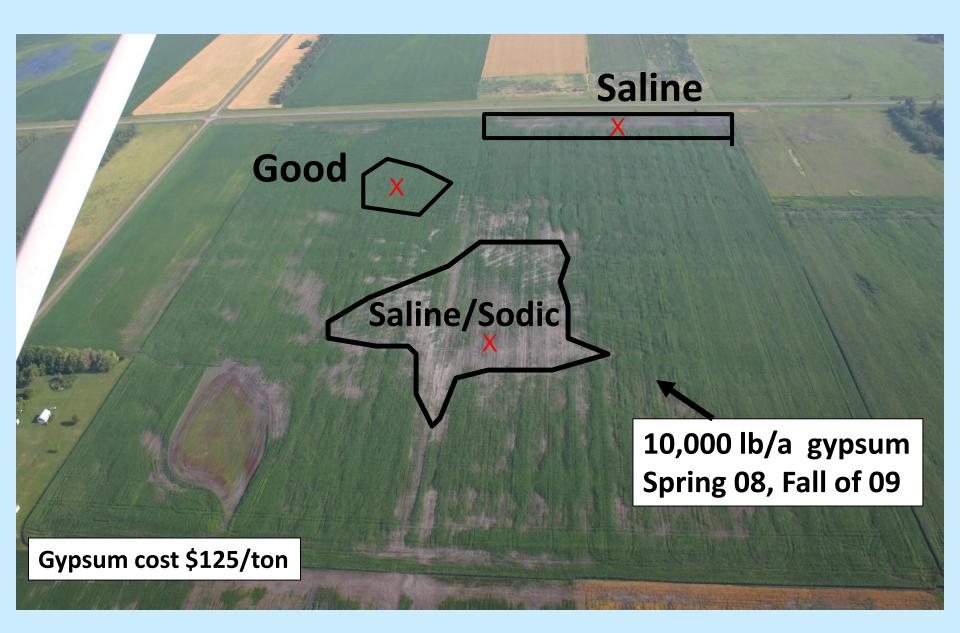
Saline and Sodic Soils in North Dakota

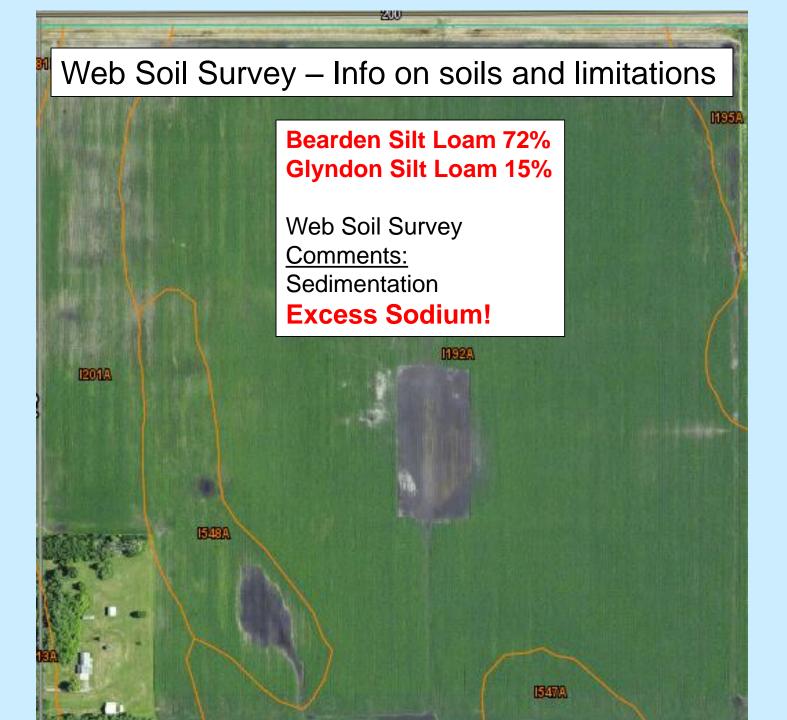
Sodic Soils

Severe problem area

Frequent inclusion in badlands

Occasional to rare inclusion in productive land

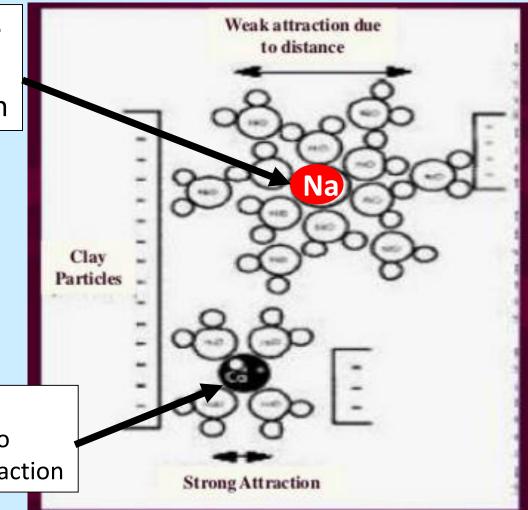

Saline Soils

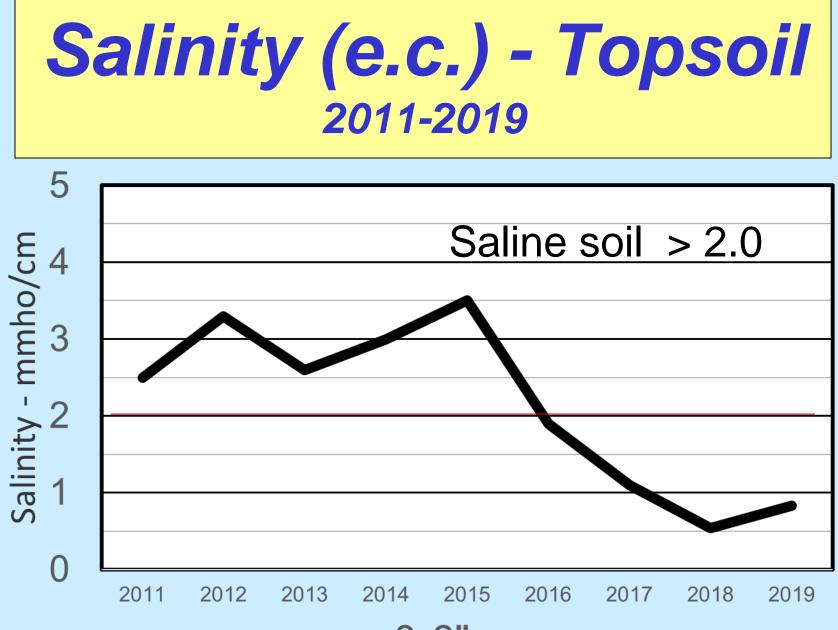


Frequent inclusion in productive land

- Occsional inclusion in productive land
- O Rare inclusion in productive land

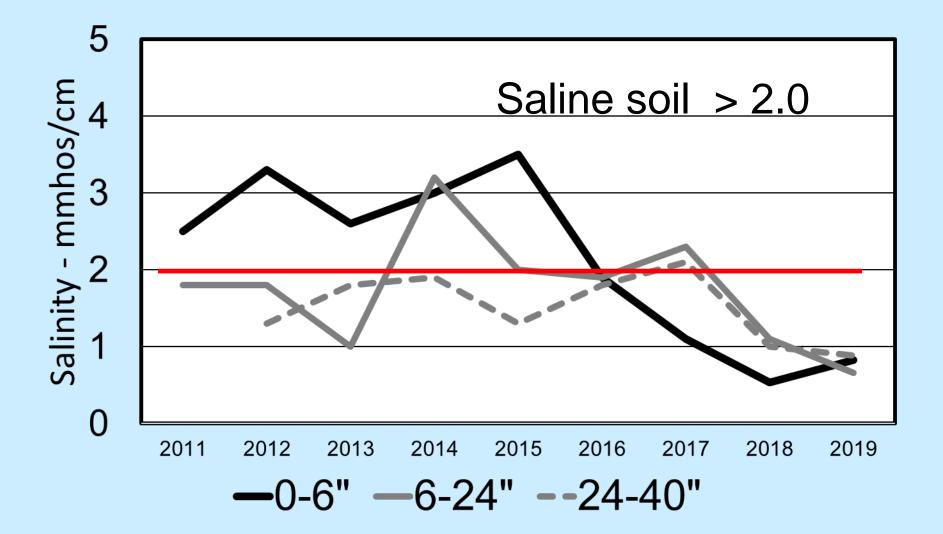
Greg Riedman – Consultant Mike Kozojed – Farmer

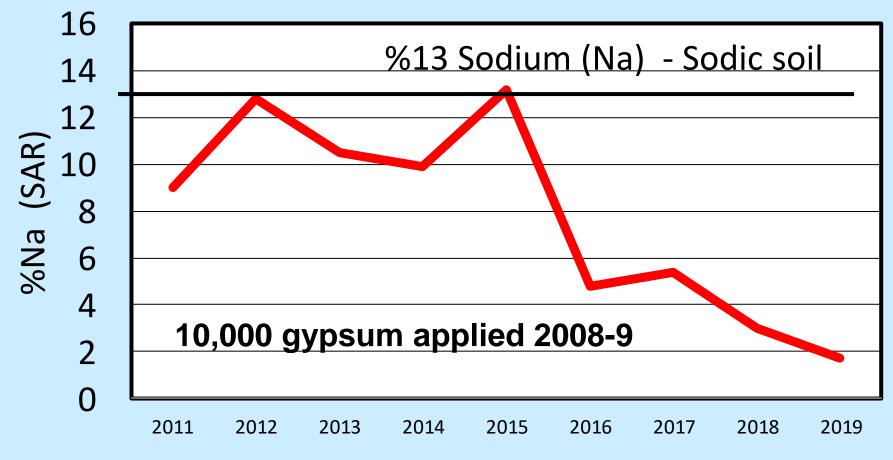

Saline and Sodic Soil Salinity >2.0 & Sodium >13%


- Soils with high salts and high sodium have good structure (feel soft and crumbly)
- Tile can leach salts away over many years on this heavy soil (wet years required)
- Gypsum (CaSO4) needs to be applied prevent sodium from destroying soil structure (Calcium replaces sodium on soil exchange sites)
- If salinity falls below 1.0, and sodium remains high, the sodium may cause swelling and dispersion (Water flow is greatly reduced).

Sodium forces clay particles apart (weaker attraction)

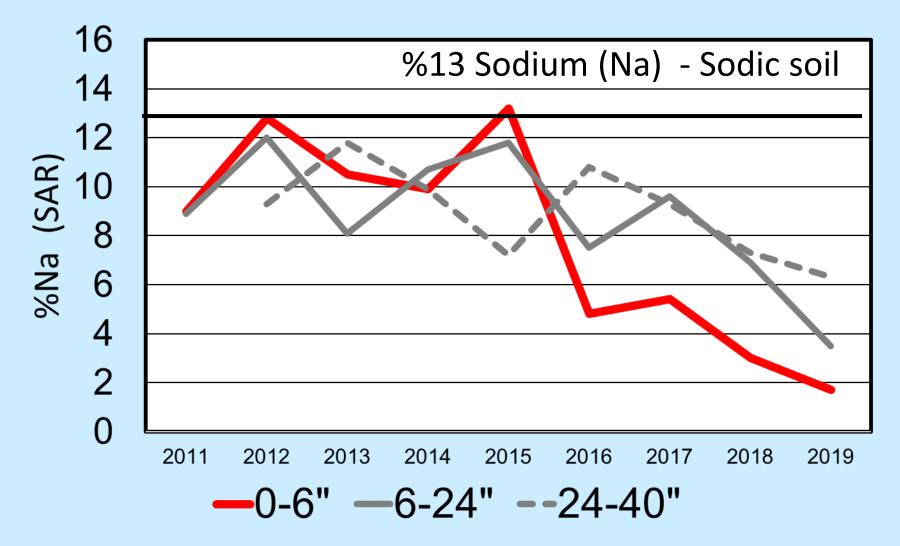
Hydrated Sodium pushes the clay particles Further apart resulting in weaker attraction


Calcium is smaller with two charges and Allows clay particles to be closer resulting in Stronger attraction



-0-6'

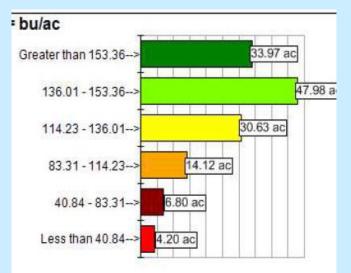
Salinity – Top and subsoil 2011-2019

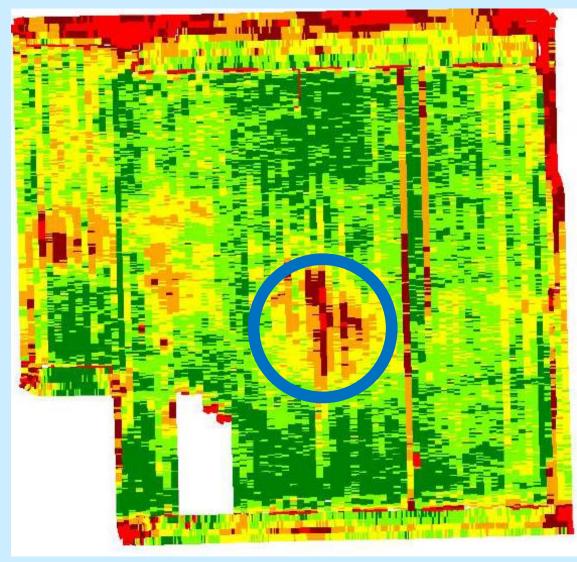


Sodium (%Na) - Topsoil

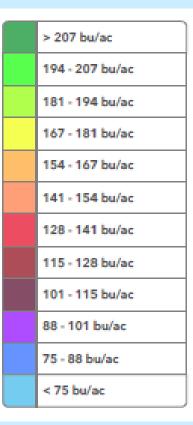
-0-6"

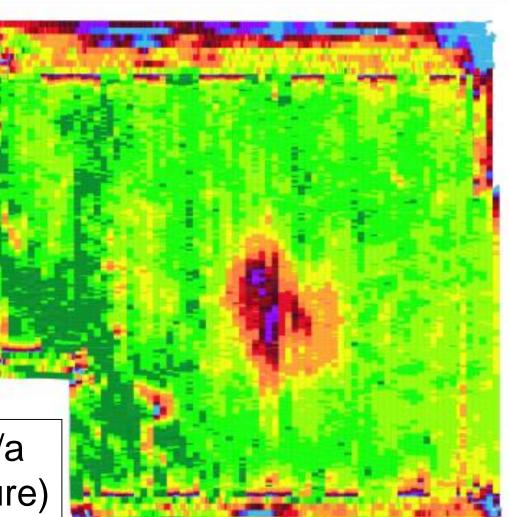
Sodium (%Na) Topsoil and Subsoil depths


Monthly Rainfall (Hillsboro) 2002 – 2019 April – October (NDAWN)


	5 year Ave	07	08	09	10	11	12	13	14	15	16	17	18	19
April	1.4	1.3	0.8	0.9	1.2	1.9	1.2	1.1	2.8	0.6	1.5	0.9	0.2	1.2
May	2.7	3.9	1.1	1.8	2.8	2.8	1.0	1.6	1.6	3.9	3.2	0.9	1.7	1.8
June	3.6	5.2	4.5	3.2	1.7	4.2	3.1	5.9	5.9	4.3	1.3	2.9	4.2	2.3
July	3.3	1.7	4.7	1.7	2.6	3.2	0.7	2.0	2.0	2.6	4.0	1.6	2.9	4.5
Aug	2.5	1.1	1.5	3.1	2.9	5.3	2.5	2.8	2.8	1.2	5.2	0.6	2.7	4.2
Sep	2.2	2.6	4.8	2.2	6.1	0.6	0.2	1.6	1.6	0.7	2.8	6.3	2.6	7.7
Oct	2.2	1.7	3.8	5.0	2.1	0.6	2.5	0.5	0.5	1.4	2.0	0.1	3.5	3.5
Total	17.9	17.5	21.2	17.9	19.4	18.6	11.2	17.2	17.2	14.7	20.0	13.3	17.8	25.2

Red number indicates a month or year with rainfall higher than 5 year average


Corn Yield 2014


Averaged 133 bu/a Dry corn

Corn Yield 2016

Averaged 184 bu/a Corn (17.9% moisture)

Saline & Sodic Soil

- Salinity has decreased in topsoil (didn't decrease until 2016)
- Gypsum application has prevented sodium from causing issues with topsoil. No dispersion has been observed which would limit water infiltration.
- Sodium lower in the profile may cause swelling and dispersion when salts get below 1.0 (no issues observed yet)

What should I expect when tiling fine texture soil with High salinity and High sodium?

- Tile drainage will keep affected area from getting larger
- Salts will decrease very slowly in the topsoil over many years (fine text soils take much longer)
- Soils with sodium issues require gypsum to avoid issues with dispersion once salts leave (expense)
- Tiling fields with coarse/ medium texture and moderate salinity and sodium issues will be better investment (They will respond quicker)
- Pick your fights wisely!

Wet Sticky Soil Conditions

Plugged Dry Tip (wrong tip!)

Thin Cutting Edge

Wet tip with recessed Lip - Not plugged (Correct tip) With WD-40

Blunt end with lip inside

Why WD-40?

- Previous Testing showed low contaminants
- Lubrication has been proven
- Evaporates away quickly (others lubricants remain on the probe)
- Can penetrate the surface of the metal to keep lubricating

Soil Sampling Lubricants University of Wyoming 1995 (WD-40 Recommended)

Lubricant	Nitrate Lb/a	P ppm	K ppm	Fe ppm	Mn ppm	Zn ppm	Cu ppm
Control	14	11	218	15.0	1.5	0.8	1.1
PAM	16	11	227	14.6	4.0	0.8	1.1
WD-40	14	10	221	13.9	1.6	0.8	1.0
LSD(0.05)	ns	ns	ns	ns	0.3	ns	ns

Retesting WD-40 (22 years later)

- Evaluate current WD-40 (changes in formula?)
- Included PAM vegetable oil
- Included Bleach
 - Interest in using a lubricant that also kills microbes (bio security)

Soil Lubricant Contamination

Lubricant	Phosphorus	Potassium	Sulfur	рН
	ppm	ppm	lb/acre	
Control	6.4	302	21.0	7.7
WD-40	6.3	297	19.9	7.7
PAM	6.6	303	21.2	7.7
Bleach	6.7	310	21.0	7.7
LSD(0.05)	0.3	ns	ns	ns

Soil Lubricant Contamination

Lubricant	Zinc	Iron	Copper	Manganese
	ppm	ppm	ppm	ppm
Control	1.46	14.5	0.81	4.13
WD-40	1.47	14.3	0.81	4.32
PAM	1.49	14.4	0.83	4.90
Bleach	1.48	15.0	0.82	4.69
LSD(0.05)	ns	ns	ns	ns

Soil Lubricant Contamination

Lubricant	В	Ca	Mg	Sodium	Chloride
	ppm	ppm	ppm	ppm	lb/acre
Control	1.07	3890	360	21.85	2.60
WD-40	1.07	3900	360	20.80	2.75
PAM	1.09	3920	360	19.75	2.90
Bleach	1.08	3970	370	28.25	25.55
LSD(0.05)	ns	ns	ns	4.12	4.04

Still lubricant of choice!

Education Projects 2020

- Handling samples for Nitrate
 - Warm, refrigerator, freezer
 - With and without WD-40
- Changing %K on Base Saturation

 1000 lb/a KCI (0-0-60) wasn't enough
 2000 lb/a? (Go big or go home!)

Thank You Questions?

CEU sign out! Ideas for topics and Speakers Travel Safe!