Dispersed attitudes: I'm tiling this country and you can't stop me!

Tom DeSutter Professor of Soil Science 2020 Agvise Soil Fertility Seminars

Today's demonstration: *use of* gypsum in sodic soils

"Saline" vs "Sodic" Soils

- Saline soils
 - Contain elevated levels of the of the chloride and sulfate salts of Na, Ca, Mg, and K
 - Salinity is the "total concentration of dissolved mineral solutes that are found in waters and soils" (NRCS)
 - Negatively effect plant growth
- Sodic soils
 - Soils affected by the sodium ion (Na⁺)
 - Sodicity is the "accumulation of sodium"
 - Oftentimes have low salinity
 - Soluble salts is a main driver in sodic soil behavior
 - Causes soils to become hard-set, crust, restrict root penetration, and may not have a bottom when saturated

Saline soil (photo by Jay Goos)

Sodic soil (photo by NRCS)

Saline soils, EC > 4 mmhos/cm within 30" (saturated paste extract)

Sodic soils, SAR > 10 within 30" (saturated paste extract)

"Common" Salts in the Soil

	Compound	Common Name	Molecular Formula	Solubility (20° C)
				g/L
	Calcium	Lime	CaCO ₃	0.06 †
	carbonate			
	Magnesium carbonate		MgCO ₃	2.51‡
_	Sodium carbonate	Soda	Na ₂ CO ₃	179
	Sodium bicarbonate	Baking soda	NaHCO ₃	87
	Calcium sulfate	Gypsum	CaSO ₄	1.9
	Magnesium sulfate	Epsom	MgSO ₄	252
	Sodium sulfate	Glauber's salt	Na ₂ SO ₄	161
	Magnesium chloride		MgCl ₂	410
;	Sodium chloride	Table salt	NaCl	264
	Calcium chloride		CaCl ₂	427

Solubility, in general:

 $Cl^{-} > SO_{4}^{2-} > CO_{3}^{2-}$

EC of saturated solutions:

Seawater_____

Nutrient I	In	terp	retati	on	15	t Cro	op Choice	•	2 n	Choice 3rd C			rd Cro	I Crop Choice			
		VLow	Low	Med	High		Cor	n-Grain			Corn	Grain			Corr	Grain	
0-6"	0-6" 5 lb/ac					YIELD GOAL		YIELD GOAL				YIELD GOAL					
						160 BU			170 BU				180 BU				
						SUG	GESTE	D GUIDELIN	ES	SUGGESTED GUIDELINES				SUGGESTED GUIDELINE			LINES
Nitrate							E	Band		Band				Band			
						LB/ACRE APPLICATION		LB/ACRE		APPLICATION		LB/	LB/ACRE /		CATION		
Olsen	19 ppm					N	172			N	184			N	196		
Phosphorus Potessium	374 ppm					P2Os	15	Band (2)	(2) *	P2Os	15	Band (2x)	2) *	P2Os	15	Band	(2x2) *
0-6" Chloride	1531 lb/ac	•••••	•••••		•••••	К20	10	Band (2)	(2) *	K20	10	Band (2x	2) *	К20	10	Band	(2x2) *
0-6" Sulfur	120 +lb/ac	•••••	•••••	•••••	•••••	сі		Not Availab	le	сі		Not Availabi	e	сі		Not Av	ailable
Boron	11.2 ppm					s	0			s	0			s	0		
Zinc	0.94 ppm					в	0			в	0			в	0		
Iron	7.4 ppm					Zn	3	Band		Zn	3	Band		Zn	3	Ba	nd
Manganese	3.9 ppm					Fe	0			Fe	0			Fe	0		
Copper	0.84 ppm					Mn	0			Mn	0			Mn	0		
Magnesium	991 ppm					Cu	0			Cu	0			Cu	0		
Celcium	4000 ppm					Mg	0			Mg	0			Mg	0		
Sodium	1500 ppm					Lime				Lime				Lime			
Org.Matter	4.2 %							on Exchange % Rase S			e Sa	aturation (Typical Range)					
Carbonate(CCE)	9.4 %					Soil pH Buffer pH		Capacity		% Ca	96	Ma	%K	% Na	% H		
0-6" Sol. Seite	0.33 mmho/cm		••			0-6* 8	3.4			35.7 m	eq.	(65-75) 56.0	(15	-20) 3.1	(1-7) 2.7	(0-5) 18.2	(0-5)

Nutrient I	In	terp	retation	1st Crop Choice			2nd Crop Choice				3rd Crop Choice					
			Low	Med High	Corn-Grain			Corn-Grain				Corn-Grain				
0-6"	81 lb/ac	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		YIELD GOAL			YIELD GOAL			YIELD GOAL				
						160 BU			170 BU			180 BU				
					SUG	GESTE		NES	SUGGESTED GUIDELINES				SUGGESTED GUIDELINE			LINES
Nitrate						E	Band		Band			Band				
					LB/A	CRE	APPLICA	TION	LB/ACRE APPLICATION			ION	LB/ACRE APPLI			CATION
Olsen	43 ppm	•••••		• • • • • • • • • • • • • • • • • • • •	N	81			N	93			N	105		
Phosphorus Potassium	203 ppm				P2Os	15	Band (2:	x2) *	P2Os	15	Band (2x)	2) *	P2Os	15	Band	(2x2) *
0-6"	385 lb/ac	•••••	•••••	••••••	К20	10	Band (2:	x2) *	K20	10	Band (2x)	2) *	К20	10	Band	(2x2) *
0-6"	120 +lb/ac	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	сі		Not	: ole	сі		Not Availabl	e	сі		Not A	ailable
Boron	2.9 ppm				s	0			s	0			s	0		
Zinc	0.37 ppm				в	0			в	0			в	0	-	
Iron	4.1 ppm				Zn	5	Band	1	Zn	5	Band		Zn	5	Ba	nd
Manganese	2.5 ppm				Fe	1	Band	1	Fe	1	Band		Fe	1	Ва	nd
Copper	0.77 ppm				Mn	0			Mn	0			Mn	0		
Megnesium	2553 ppm				Cu	0			Cu	0			Cu	0		
Calcium	8652 ppm				Mg	0			Mg	0			Mg	0		
Sodium	70 ppm	•••••	••••		Lime				Lime				Lime			
0 rg.Matter	3.5.%			•••	Cat			ion Exchange %			e Sa	Saturation (Typical Range)				
Carbonate(CCE)	2.6 %				Soll pH Buffer pH Cau		Capacity		% Ca % Mg		Mg	% K	% Na	% H		
0-6" Sol. Salta	4.03 mmho/cm		•••••	• • • • • • • • • • • • • • • • • • • •	0-6* 8	9.1			65.4 me	eq.	(65-75) 66.2	(15	-20) 2.6	(1-7) 0.8	(0-5) 0.5	(0-5)

So, which salts will likely move faster in soils?

Depends on: 1)Water flow in soils -Saturated flow vs unsaturated flow 2)Solubility of the salts

http://www.extension.umn.edu/distribution/cropsystems/images/7740f04.gif

FIGURE 7-1 Types of water in soil (adapted from Thein & Graveel, 1997).

Won't the salts leach by themselves?

Yes, more or less, but it will take time.

What has to happen to leach salts?

- More fishing?
- Leaching > Evaporation
- Ground water level must be below the capillary fringe
- The downward moving water must have a place to go

Sources of water to leach soils with

- Best case scenarios:
 - Slow and steady rainfall
 - Melting snow.
 - You can't make more water but you can concentrate it

Example of "road ditch salinity"

Two main reasons that this occurs:1) Sodium concentrations are elevated2) The salinity is low

$$2NaX + CaSO_4 \rightleftharpoons CaX_2 + Na_2SO_4$$

Figure by Thomas DeSutter and Maria Breker

Recent NDSU research has found that swelling and/or dispersion can occur when the %Na is greater than 5 when the $EC_{1:1}$ is less than 1.0 mmhos/cm.

SAR_e =
$$\frac{Na^{+}}{\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}}$$

Historically, Ca and Mg have been treated as equals with respect to their ability to flocculate clays

The story of Mg...

- In fact, as far back as 1935, Ellis and Caldwell, suggested dividing soils as "solonetz" into "sodium solonetz" and "magnesium solonetz" soils.
- In 2006, the Food and Agriculture Organization of the United Nations set out a definition of a sodic soil as "having 15 % or more exchangeable Na plus Mg on the exchange complex within 50 cm of the soil surface throughout"

Marchuk and Rengasamy, 2011

When Ca is present it does not matter if EC is high or not

When repulsion becomes greater than attraction dispersion will occur

This happens when Na is on exchange sites and when EC is low

Keep in mind that just knowing the level of Na, Ca, Mg, or K is not the whole story:

-the level of soluble salts greatly controls swelling and dispersion

Sources of Calcium

- Gypsum (CaSO₄·2H₂O)
 - Mined
 - Most likely pelletized
 - About \$200/ton
 - Synthetic
 - Byproduct from coal combustion
 - Powder form
 - Now available, less than \$15/ton
- Both are very pure and are good sources of S too

Sources of Calcium

- Sugar beet spent lime
 - Lots of beneficial uses for ag
 - Very low solubility, so not ideal for sodic soils
 - Organic compounds within it are very degradable and can improve microbial respiration
- Calcium nitrate
 - High solubility
 - Often used in reclamation of brine spills

So, how much gypsum should one apply?

- Need to know, or assume, some basic soil parameters
 - Soil density
 - Actual cation exchange capacity (CEC)
 - What level of Na you are starting with?
 - What level of Na doing you want end with?
 - What is the thickness of soil that needs treating?
 - How pure is your gypsum?

GR = 0. 86(F)(D)(ρ_{b})(CEC)(ESP*i* - ESP*f*)(100/%purity)

GR = gypsum requirement (Mg/ha) F = Ca-Na exchange efficiency; 1.1 for ESP of 15, 1.3 for ESP of 5 D = depth of soil to treat (m) ρ_b = soil bulk density (Mg/m³), typically ranges from 1.1 to 1.6 CEC = soils' actual cation exchange capacity (mmol_c/kg) ESP*i* = soils' initial exchangeable sodium percentage (%) ESP*f* = soils' final exchangeable sodium percentage (%) Purity = the actual purity of the gypsum that you are using (%)

0.86 is derived from the mass of CaSO₄*2H₂O required to replace one Na⁺

Download now, its free!

9:47 AM

* 81% 🔳

Il Verizon 🗢

Gypsum Requirement Determination

Developed by Department of Soil Science, North Dakota State University

Image: Weizon (*) 9:48 AM * 81% Image: Gypsum Requirement About Calculator Formula Brief Intro

For more information, please contact:

Dr. Tom DeSutter Associate Professor Soil Science Program Leader

Office: 233 Walster Hall, Box 6050, NDSU

Phone: 701-231-8690

Email: Thomas.Desutter@ndsu.edu

© 2018 Department of Soil Science, North Dakota State University.

Welcome to the NDSU gypsum requirement (GR) mobile app. The calculations are based on the equation of Oster et al. (1999). To determine GR (in Mg/ha; e.g. 1 Mg/ha = 1.1 tons/acre) the equation requires knowledge of the 1) depth, D, (in meters; e.g. 0.15 m = 6 inches) to which the gypsum will be applied, 2) the bulk density, Bd, of the soil (in Mg/m3; e.g. 1 Mg/m3 = 1 g/cm3; default value in the calculator is 1.47 Mg/m3), 3) the cation exchange capacity, CEC, of the soil (in mmolc/kg; e.g. 100 mmolc/kg = 10 cmolc/kg = 10 meq/kg), 4) the reaction efficiency factor, F, which is unitless (e.g. choose 1.3 if the final ESP is 5 and 1.1 if the final ESP is 15 or greater), 5) the initial ESP, ESPi, which is determined by a gualified laboratory (ESP is a % of the Na ions on the soil's exchange sites), 6) the target, final ESP, ESPf, and 7) the purity of the gypsum being used (in %).

You will need to adjust the final mass of avosum © 2018 Department of Soil Science, North Dakota State University.

GR = 0. 86(F)(D)(ρ_{b})(CEC)(SAR*i* - SAR*f*)(100/%purity)

Where SAR is the sodium adsorption ratio.

When ESP<50 then ESP≈SAR.

So, what about %Na?

GR = 0. 86(F)(D)(ρ_{b})(CEC)(%Na*i* - %Na*f*)(100/%purity)

SAR = 1.04<u>%Na</u>- 0.35; r² = 0.92

So, just replace SAR or ESP with %Na.

You can use either

 $GR_{adj}=0.86*F*D*\rho_b*CEC*(ESP_i-ESP_f)/p$

or

$GR_{adj}=0.86*F*D*\rho_b*CEC*(SAR_i-SAR_f)/p$

Note: The second formula requires that the ESP value is less than 50.

Symbol	Definition
GR _{adj}	Amount of gypsum needed. Adjusted by its purity. unit: Mg ha ⁻¹
ESP	exchangeable sodium percentage, unit: %
ESP _i	initial ESP level
ESP _f	final or target ESP level
SAR	sodium adsorption ratio, unit: %
SARi	initial SAR level

II Veri	zon LTE	9:24 AM	\$ 90% 🔲					
6	Gyp	sum Requ	irement					
	About	Calculator	Formula					
Inpu	it each re	quired param	eter value					
calc	ulation. A	ll fields are re	quired.					
	Soil Depth	ı (m)						
		positive value	X					
	Soil Bulk	Density (Mg m ⁻¹	3)					
		positive value	×					
	CEC (mm	ol _c kg ⁻¹)						
	positive value X							
	Gypsum F	Purity (%)						
	value	between 0 and	100 ×					
	O u	se ESP 🔘 use	SAR					
	_	Initial ESP (%)						
	valu	ue between 0 an	d 100 X					
		Target ESP (%)					
	valu	ue between 0 an	d 100 ×					
		Calc	ulate					
		Result i	s displayed below.					

Recommendations:

- Saline soils
 - Soil sample to monitor changes over time
 - May need to use salt-tolerant crops in certain areas of the field
 - Leaching lots of water is essential
 - Tile drainage will eventually help, takes time
- Sodic soils
 - Soil sampling is the only real way of determining the Na and EC levels
 - If tiling, 1' increments to 4' is recommended
 - Gypsum will only be useful to depth at which it is applied
- Unknown?
 - Soil sample!

Demo results:

- Water did not move in sodic soil
- Addition of 'salt' to the sodic soil allowed the water to move
- The powder gypsum was more effective than the pelletized gypsum
- Spent lime may work, eventually, but don't expect short term success (less than 5 yr)
 - May never work in soils having pH >7.5
- Be careful of using poor irrigation water

Dispersed attitudes: I'm tiling this country and you can't stop me!

Tom DeSutter Professor of Soil Science 2020 Agvise Soil Fertility Seminars