Troubleshooting Problem Areas: Plant Tissue and Soil Analysis

Demonstration Project Update

John S. Breker Soil Scientist, AGVISE Laboratories

Is a timeshare right for me?

Troubleshooting nutrient deficiencies with plant and soil sampling

John S. Breker

John T. Lee

Plant tissue analysis as a tool

- Snapshot in plant lifecycle
 - Measure of nutrient uptake so far
 - Reflection of plant history
- Sufficiency ranges and DRIS index provide context for "normal" or "critical" nutrient concentrations in plant tissue
- Valuable tool for agronomists
 - Insight into things seen and unseen

Plant tissue analysis as a tool

- Confirm visible nutrient deficiency symptoms (e.g., nitrogen vs. sulfur)
- 2. Diagnose problem areas
 - Slow or uneven growth
 - Unusual symptoms
- 3. Compare fertilizer efficacy (rate, placement, timing)

Limitations of plant tissue analysis

- Sufficiency ranges are not universal or permanent
 - Research on specific plant parts for specific growth stages
 - Interpolation for growth stages with limited or no research basis
 - Survey ranges, not evaluated for plant response
- Snapshot in plant life cycle
 - Reflection of history
 - No crystal ball for the future

Troubleshooting with plant tissue analysis

- Information from good and bad areas (paired samples required)
 - Plant tissue sample (speedometer)
 - Soil sample (gas tank)
- Observations and field information
 - Plant symptoms, photographs
 - Fertilizer applied (rate, placement, timing, source)
 - Soil conditions (waterlogged, very dry)

Photography quality is important, but framing your comparison is key

Troubleshooting with plant tissue analysis

Collect within 7-10 days after visible symptoms appear (results questionable later)

- Correct plant part for correct growth stage
- Do not forget soil samples (0-6" depth acceptable)

Handling the samples

- Bush off any soil or dust (Fe and Mn contamination)
- Ship sample immediately or keep cool in refrigerator
- Sample bags have holes to allow moisture to escape

Interpreting analysis results

- Sufficiency range
 - Range deemed adequate for each nutrient
 - Specific for plant part and growth stage
 - University research on most crops
- DRIS Index (Diagnosis Recommendation Integrated System)
 - Numerical index calculated for each nutrient based on relative amount in the plant
 - Indexes within -20 to +20 are <u>normal</u>
 - Ranks nutrient of largest concern
 - University research only on major crops

Sufficiency range interpretation

Sufficiency range interpretation

Diagnosis Recommendation Integrated System (DRIS)

Corn plant tissue analysis

Plant age (d)	Nutrie	Nutrient content				
	N/P	N/K	K/P			
30	15	1.4	11			
60	15	1.6	9			
80	14	1.8	8			
110	15	1.7	9			

Ratio of N/P stays the same as healthy plants age

Diagnosis Recommendation Integrated System (DRIS)

Corn plant tissue analysis Shorter plants

Ν	Ρ	Κ	S	Ca	Mg	Na	Zn	Fe	Mn	Cu	В
%									ppm		
3.4	0.49	2.7	0.30	0.97	1.14	0.03	11	871	208	13	11
L	S	L	S	S	Н	S	L	VH	Н	S	S
					DRI	S					
-18	-3	-2	-16	8	70		-78		46	-3	-3

DRIS indicates that zinc is the most limiting nutrient

Real world troubleshooting

Examples from real customers

- Visible symptoms on plants (photographs)
- Information from good and bad areas
 - Soil samples
 - Plant tissue samples
- Field information from grower and agronomist

Notes:

- Twisted, withered
 leaf tips after tillering
- 'Rattail' appearance

Good area

Bad area

	Soil an	alysis				Plant and	alysi	S	
		Good	Bad			Good	d	Bad	
Ν	lb/acre			Ν	%	5.9	Н	5.6	Н
Ρ	ppm	23	29	Р	%	0.38	S	0.37	S
K	ppm	207	202	K	%	3.5	Н	3.4	Н
S	lb/acre	22	15	S	%	0.35	S	0.32	S
Zn	ppm	1.22	0.39	Zn	ppm	38	S	28	S
Cu	ppm	0.69	0.40	Cu	ppm	4	L	3	L
В	ppm	0.5	0.2	В	ppm	10	S	8	S
Fe	ppm	80	48	Fe	ppm	106	S	106	S
Mn	ppm	26	17	Mn	ppm	98	S	109	Н
CI	lb/acre	5	4	CI	%	0.19	L	0.13	L
рН		5.0	5.1						
EC	dS/m	0.57	0.17						
OM	%	3.8	1.5						
CEC	cmol(+)/kg	12.4	8.4						

	Soil an	alysis				Plant and	alysi	S	
		Good	Bad			Goo	d	Bad	
Ν	lb/acre			Ν	%	5.9	Н	5.6	Н
Ρ	ppm	23	29	Ρ	%	0.38	S	0.37	S
Κ	ppm	207	202	Κ	%	3.5	Н	3.4	Н
S	lb/acre	22	15	S	%	0.35	S	0.32	S
7n	ppm	1 22	0 39	 Zn	ppm	38	S	28	S
Cu	ppm	0.69	0.40	Cu	ppm	4	L.	3	L.
В	ppm	0.5	0.2	В	ppm	10	S	8	S
Fe	ppm	80	48	Fe	ppm	106	S	106	S
Mn	ppm	26	17	 Mn	ppm	98	S	109	н
CI	lb/acre	5	4	CI	%	0.19	L.	0.13	L
рН		5.0	5.1						
EC	dS/m	0.57	0.17						
OM	%	3.8	1.5						
CEC	cmol(+)/kg	12.4	8.4						

Coarse-textured soil, likely eroded

Visual deficiency symptoms

Copper deficiency

Withered, twisted leaf tips 'Rattail' appearance

Chloride deficiency

Non-distinct symptoms Manifests as leaf disease spots

- Plant tissue: low Cu, low Cl
- Soil test: low Cu, low organic matter, coarsetextured soil
- Visual symptoms verify Cu deficiency
- Apply Cu with small grains
- Select non-Cu sensitive crops

Notes:

- Chlorosis and necrosis starting in lower canopy
- Drought-stress
 appearance

	Soil analysis					Plant an	<u>alysi</u>	S	
		Good	Bad			Goo	d	Bac	1
Ν	lb/acre	26	182	Ν	%	4.5	S	3.0	D
Ρ	ppm	21	25	Р	%	0.31	S	0.25	S
Κ	ppm	611	631	Κ	%	2.1	S	1.8	S
S	lb/acre	360+	360+	S	%	0.41	S	0.50	S
Zn	ppm	1.30	1.84	Zn	ppm	19	L	13	L
Cu	ppm	1.00	1.11	Cu	ppm	8	S	7	S
B	ppm	1.0	6.8	В	ppm	202	VH	1872	VH
Na	ppm	35	301	Na	%	0.07	S	0.30	VH
CI	lb/acre	24	68	CI	%	1.17	VH	0.42	S
EC 1	dS/m	0.23	0.44						
EC 2	dS/m	1.24	3.52						

	Soi	l analysis						Plant an	alysi	S	
		Good	Bad		-			Goo	d	Bac	
Ν	lb/acre	26	182		Ν	N	%	4.5	S	3.0	D
Ρ	ppm	21	25	•	F	כ	%	0.31	S	0.25	S
K	ppm	611	631		ł	<	%	2.1	S	1.8	S
S	lb/acre	360+	360+				~			0.50	S
					Bo	oror	<u>1 > 3 </u>	opm to	xic?		
Zn	ppm	1.30	1.84		Z	Zn	ppm	19	L	13	L
Сι	mag	1.00	1.11		(Cu	mag	8	S	7	S
В	ppm	1.0	6.8		E	3	ppm	202	VH	1872	VH
Na	ppm	35	301		N	Va	%	0.07	S	0.30	VH
CI	lb/acre	24	68		C		%	1.17	VH	0.42	S
					_						
EC	1 dS/m	0.23	0.44								
EC	2 dS/m	1.24	3.52								

- Plant tissue: deficient N, excessive B, high Na
- Soil test: toxic B, high Na, very high subsoil salinity
- Crop rotation and selection: boron toxicity, subsurface salinity
 - No issues during sunflower years (more tolerant to boron toxicity)

Case studies from 2018

Cooperative project with customers across the region

- 1. Purple corn in southern MN
- 2. Stunted corn in eastern SD
- 3. Stunted safflower in southwest ND
- 4. Yellow wheat in northern ND

Case study 3: Poor stand, stunted safflower

Notes:

- Poor germination, small plants
- Pattern follows landscape

Case study 3: Stunted safflower

	Soil ar	nalysis				Plant an	alysi	S	
		Good	Bad			Goo	d	Bac	1
Ν	lb/acre	36	37	Ν	%	5.52	Н	5.40	Н
Ρ	ppm	25	23	Ρ	%	0.32	L	0.27	L
K	ppm	400	257	K	%	5.6	Н	4.8	Н
S	lb/acre	17	12	S	%	0.3	S	0.32	S
Ca	ppm	1285	884	Ca	%	1.19	S	1.42	S
Mg	ppm	542	223	Mg	%	0.47	L	0.66	S
Zn	ppm	1.42	0.94	Zn	ppm	53	Н	68	Н
Cu	ppm	0.83	0.45	Cu	ppm	12	S	7	S
В	ppm	0.40	0.33	В	ppm	17	S	23	S
Fe	ppm	87	93	Fe	ppm	1540	VH	1438	VH
Mn	ppm	28	37	Mn	ppm	244	Н	809	VH
рН		5.6	4.5						
EC	dS/m	0.30	0.15						

Case study 3: Stunted safflower

	Soil a	nalysis					Plant an	alysi	S	
		Good	Bad				Goo	d	Bac	l
N	lb/acre	36	37		N	%	5.52	Н	5.40	Н
Ρ	ppm	25	23		Ρ	%	0.32	L	0.27	L
K	ppm	400	257		Κ	%	5.6	Н	4.8	Н
S	lb/acre	17	12		S	%	0.3	S	0.32	S
Ca	ppm	1285	884		Ca	%	1.19	S	1.42	S
Mg	ppm	542	223		Mg	%	0.47	L	0.66	S
Zn	ppm	1.42	0.94		Zn	ppm	53	Н	68	Н
Cu	ppm	0.83	0.45		Cu	ppm	12	S	7	S
В	ppm	0.40	0.33		В	ppm	17	S	23	S
Fe	ppm	87	93		Fe	ppm	1540	VH	1438	VH
Mn	ppm	28	37		Mn	ppm	244	н	809	VH
				- ·						
рН		5.6	4.5							
EC	dS/m	0.30	0.15					t a t t		
	ISE				- A W	iumin /hen p	H < 5.0	(icity)-5.5	5	

Aluminum toxicity on wheat seedlings

Low pH makes more exchangeable Al³⁺ More Al³⁺ reduces grain yield

Havlin, J.L., J.D. Beaton, S.L. Tisdale, and W.L. Nelson. 2005. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. 7th ed. Pearson Prentice Hall, Upper Saddle River, NJ.

Case study 3: Stunted safflower

Property	Depth (inch)	Good	Bad
рН	0-2	4.5	4.3
	2-6	6.1	4.6
	6-12	6.1	5.8
Aluminum (ppm)	0-2	24	91
	2-6	1.8	25
	6-12	0.3	0.4
Manganese (ppm)	0-2	52	52
	2-6	16	30
	6-12	7.5	4.6

For pH>6, aluminum should be near 0 ppm

Case study 3: Stunted safflower

- Plant tissue: low P in both, very high Mn
- Soil test: low pH, VERY high Al
- Crop choice, Al-tolerant varieties
- High seed-placed P rate
- Lime application
- Other land use?

Case study 4: Yellow durum wheat

Case study 4: Yellow durum wheat

	Soil an	alysis				Plant and	alysis	3	
		Good	Bad			Good	d	Bad	
Ν	lb/acre	102	62	Ν	%	4.85	S	4.46	S
Ρ	ppm	9	7	Ρ	%	0.34	S	0.37	S
K	ppm	234	277	Κ	%	4.2	Н	3.6	Н
S	lb/acre	36	22	S	%	0.30	S	0.29	S
Zn	ppm	0.38	0.29	Zn	ppm	21	S	22	S
Cu	ppm	0.50	0.52	Cu	ppm	7	S	6	S
B	ppm	1.67	1.45	В	ppm	5	S	7	S
Fe	ppm	8.7	6.9	Fe	ppm	535	VH	522	VH
Mn	ppm	2.12	2.72	Mn	ppm	64	S	46	S
CI	lb/acre	19	5	CI	%	0.65	Н	0.38	S
Ca	ppm	5221	5996	Ca	%	0.80	Н	0.76	Н
Mg	ppm	404	488	Mg	%	0.23	S	0.25	S
Na	ppm	49	29	Na	%	0.01	S	0.09	S
рН		8.0	8.2						
EC	dS/m	0.60	0.46						
CCE	%	3.2	5.8						

Case study 4: Yellow durum wheat

- Plant tissue: same
- Soil test: same
- Based on visual symptoms, S deficiency most likely
- Symptoms were not corrected with AMS application
- Inconclusive, other factors:
 - Herbicide carryover (dry conditions, surface pH)
 - Water availability, positional nutrient availability

Summary

- Single plant tissue analysis report is usually not enough
- Plant tissue concentrations are affected by:
 - Plant size, growth stage
 - Fertilizer rate, placement, timing, source (4Rs)
 - Soil moisture, compaction
- Both soil and plant tissue samples are needed
 - Soil nutrient supply truly lacking?
 - Other factors limiting nutrient uptake

Each field needs a discussion

- Troubleshooting is:
- Symptoms
- Causes
- Management

Soil sampling after banded nitrogen application

John S. Breker

John T. Lee

Common questions

"How much anhydrous ammonia did you put down?"

"Did I lose fall-applied nitrogen over the winter?"

"I cannot remember if nitrogen was even applied!"

"Was that enough sidedress nitrogen?"

All questions about auditing banded nitrogen application with soil testing.

How do you sample after banded N application?

- Fertilizer concentration in band will be much (MUCH) higher than surrounding soil
- University research trying to assess the average, usually for fall soil sampling
 - Certain number of off-band soil cores for each onband soil core (usually 3 or 4)
 - Certain distance between band and crop row
 - Dependent on locating band, band-center spacing and orientation

In-season banded N project

Banded urea (46-0-0) application

- Rate: 75 and 150 lb N/acre
- Depth: 4 inch
- Center: 30 inch

Three weeks later...

- Collected soil samples (0-6 inch) across entire 30inch row
- Analyzed for ammonium and nitrate

Urea bands are really concentrated 150 lb N/acre, 30-inch center

Knock-Yourself-Out[™] Soil Sampler

Phew...now that's done!

Knock-Yourself-Out[™] Soil Sampler

(2x4s not included)

Soil nitrogen distribution across row

What is the N rate?

In-band area (5 inch), averaged

Applied N rate lb/acre	Inorganic N recovery (NH ₄ + NO ₃) Ib/acre, 0-6 inch depth
75	383
150	595

Across entire row (30 inch), averaged

Applied N rate Ib/acre	Inorganic N recovery (NH ₄ + NO ₃) Ib/acre, 0-6 inch depth
75	78
150	119

Nitrification inhibition

- Only 10% of fertilizer N converted from ammonium to nitrate in three weeks
 - Soil temperature and moisture were conducive for rapid nitrification
- Concentrated ammonium bands delay nitrification
- Limitations on near-seed fertilizer placement
- Issues for fertilizer co-application in band

How do will you sample banded N applications?

- Collect all soil across the row
 - Shovel, measuring tape, massive soil sample
 - Knock-Yourself-Out[™] Soil Sampler, patent pending
 - Repeat 15-20 times across field

- Collect selective soil cores
 - Take 3-4 off-band cores for each on-band core
 - You must know location of band-center
 - Hitting the band-edge will throw result average
 - Error, error, error...

Soil sampling after banded N applications

- Extreme variability between on-band and offband soil cores
- You must obtain all soil across the row for a reasonable average
 - Error still exists
 - Beyond the realm of practical
- You can learn if *some* N was applied; however, the application rate remains elusive

Improving saline and sodic soils with tile drainage

John S. Breker

John T. Lee

AGVISE Laboratories

Long-term tile drainage projects

- Saline soil near Northwood, ND
 - Drain tile installed Summer 2002
 - Ten GPS-marked sampling sites
- Saline-sodic soil near Mayville, ND
 - Saline-sodic and saline areas in field
 - Drain tile installed 2007
 - Gypsum applied, total 5 ton/acre in 2008 & 2009

Saline and sodic soils in North Dakota

2003 soybean

Grady Thorsgard, farmer Sandy loam to loam pH 7.9-8.2 Carbonate (CCE) 3-6% Organic matter 4.0-5.5%

Saline soil, topsoil Change in salinity (soluble salts)

Sites 6-10 last sampled in 2017, manure applied 2018

Saline soil, topsoil Change in salinity (soluble salts)

Sites 6-10 last sampled in 2017, manure applied 2018

Saline soil, subsoil Change in salinity (soluble salts)

Subsoil salinity remains high until topsoil is leached Sites 6-10 last sampled in 2017, manure applied 2018

Tile drainage project Saline soil, Northwood, ND

- Topsoil salinity declined in years with excessive spring or fall rainfall
- Several crops now produce good yields
 - Corn, soybean, sunflower
 - Soybean iron deficiency chlorosis (IDC) reduced
- Subsoil salinity will take longer to decline
- High subsoil salinity do not affect yield as badly as topsoil salinity
- Salinity can increase in dry years if upward capillary rise > downward leaching

Long-term tile drainage projects

- Saline soil near Northwood, ND
 - Drain tile installed Summer 2002
 - Ten GPS-marked sampling sites
- Saline-sodic soil near Mayville, ND
 - Saline-sodic and saline areas in field
 - Drain tile installed 2007
 - Gypsum applied, total 5 ton/acre in 2008 & 2009

Drain tile + Gypsum application (CaSO₄•2H₂O)

Good area Low salinity – low %Na

> High salinity High sodicity (%Na)

> > 10,000 lb/acre gypsum Spring 2008, Fall 2009

High salinity

Gypsum cost \$125/ton Photo taken 2007 or 2008

Saline-sodic soil Change in salinity (soluble salts)

Decrease in salinity occurs slower on fine-textured soils, excessive leaching rainfall required

Saline-sodic soil Change in sodicity (%Na = SAR)

Request K, Ca, Mg, Na on routine test for %Na

Saline-sodic soil Changes in salinity and sodicity with depth

Corn yield 2014

Average 133 bu/acre dry corn

Corn yield 2016

Average 184 bu/acre corn (17.9% moisture)

Corn yield 2018

Average 187 bu/acre corn

Tile drainage project Saline-sodic soil, Mayville, ND

- Topsoil salinity and sodicity (%Na) consistently reduced past three years
- Subsoil salinity and sodicity (%Na) has not noticeably changed yet
- Saline-sodic area has become smaller, improved corn and soybean yields
- Saline area has not improved, water sits along road ditch and remains wet year-round

Thank you for your kind attention!

Are there any questions?

