

Managing Lodging Risk Through Agronomic Management

Amy Mangin

PhD. Student Dept. Plant Science University of Manitoba

Yield Potential in Spring Wheat

Fig. 2. "Yield values" for issues of the Manitoba and Saskatchewan Seed Guides based on the average of the cultivar least squares means for those CWRS varieties present in each issue and plotted against the year of publication.

Thomas and Graft 2014 (Can J Plant Sci)

MASC Variety Yield Data: https://www.masc.mb.ca/masc.nsf/mmpp_browser_variety.html

2017 Spring Wheat Yields in Brunkild, MB

Full Project Report Available:

http://www.mbwheatandbarley.ca/wp-content/uploads/2018/05/Mangin-Flaten-N-mgmt-for-HY-wheatproject-revised-technical-report-2018-03-31.pdf

Optimum N Rate for High Yielding S.Wheat in MB

Site-year	Total N @ Economic Optimum	Yield at Optimum N Rate	Nitrogen Supply per bushel		
		bu/ac	lbs. N/bu		
Carman 2016	Hail Dam	aged 62	3.0		
Brunkild 2016	180	75	2.4		
Carman 2017	183	96	1.9		
Brunkild 2017	183	110	1.7		
Melita 2016	123	60	2.1		
Carberry 2016	139	95	1.5		
Melita 2017	151	74	2.0		
Grosse Isle 2017	175	75	2.3		

Optimum soil test N + Fertilizer N per bushel = 2 lb N/bu

Cost of Lodging

- Yield losses of 10 40% (up to 80% in extreme cases)
- Kernel weight decreases of 8 15%
- Decreased milling and baking quality
- Increased presence of mycotoxins
- Cost of harvesting increases up to 50%
- Cost of drying increases from 20-30%

(Rademacher 2016)

How do Plants Lodge?

Stem Lodging

Stem Leverage > Stem Strength

Berry et al. 2014.

Figure 3 Brackling in winter barley.

http://adlib.everysite.co.uk/adlib/defra/content.aspx?id=100201

Root Lodging

http://adlib.everysite.co.uk/adlib/defra/content.aspx?id=100201

Figure 4 Root lodging in winter barley.

Variety Descriptions

									Resistance Level:		
Class/Variety	Site Years Tested	Yield bu/acre	Protein %	Maturity +/- 99 days	Height +/- 81 cm	Spike Awned	Lodging	Sprouting	Loose Smut	Common Bunt	Leaf ¹ { Spots
Canada Western Red Spring											
5604HR CL@	40	66	14.5	-1	10	Y	G	G	MS		MS
5605HR CL:	32	66	14.7	1	10	Y	VG	F	R	MR	MS
AAC Alida VB🛛	19	67	14.5	2	6	Y	VG	VG	R		MS
AAC Bailey 🐵	28	55	14.9	-1	13	Ν	G	G	MS	MR	1
AAC Brandon 🐵	60	69	14.2	2	0	Y	VG	Р	MR	S	
AAC Cameron VB®	34	73	13.9	1	13	Y	G	F	S	R	
AAC Connery®	32	61	14.9	1	3	Ν	VG	G	MR		
AAC Elie	44	68	14.3	2	-3	Y	VG	F	I.	I	I 🖉
AAC Jatharia VB®	33	73	14.3	1	13	Y	G	G	S	MS	
AAC LeRoy VB	6	73	14.3	0	7	Y	G	G	—	I	MS
AAC Magnet®	6	66	14.0	0	8	Y	G	G	_	S	MS
AAC Prevail VB®	44	66	14.1	1	18	Ν	G	G	S	S	MS
AAC Redberry®	32	68	14.3	0	8	Y	G	G	R		MS
AAC Redwater®	43	64	14.5	-2	8	Y	G	VG	MS	I	MS
AAC Starbuck VB®	6	73	14.5	1	1	Y	G	_	MR	S	S
AAC Tisdale®	32	67	15.1	1	8	Y	G	F	MR	MR	MS
AAC Viewfield®	45	70	14.3	3	-5	Y	VG	G	S	MR	
AAC W18760	32	62	15.1	3	3	Y	VG	F	I.	1	MS
AAC Warman VB®	19	68	14.4	0	12	Y	G	—	MR	S	
AAC Wheatland VB®	6	74	14.3	1	0	Y	VG	—	R	MR	S
	2	65	15.3	-2	10	N	VG	VG	R		n & th
Carberry	110	66	14.5	2	0	V	VG	F	MR	R	MS

Nitrogen Management

High levels of residual N or spring applied N increase risk of lodging

- Thick dense heavy canopies
- Decreased stem strength
- Increased tillering

Avoiding excessive N application rates and/or delaying a portion of N to later in season may reduce unnecessary canopy growth and decrease lodging risk

In-season split N applications at Carman and Brunkild 2016 – 2017 field trials

Plant Density

- High plant densities are related to increased risk of root lodging → reduce anchorage strength
- Current MB Agriculture recommendations are to aim for a plant density for a plant population of 230 280 plants/m²
- Industry recommends increased seeding rates for reduced tillering to promote a uniform stand for fusarium head blight (FHB) fungicide application timing

Note: Seeding rates should be targeted towards a desired plant density, taking into considerations TWK, germination % and expected mortality of variety and seeding system

Plant Growth Regulators (PGR)

Gibberellic Acid (GA) Inhibitors

- PGRs can reduce lodging risk by decreasing plant height
- GA inhibitors reduce shoot length by decreasing cell elongation and rate of cell division (Rademacher 2000)
- Allow for adjustments to the crop according to growing conditions

Manipulator 620

- Engage Agro
- Active: Chlormequat chloride
- Not register for use in barley and oats
- No registered tank mix partners

Moddus/Palisade

- Syngenta
- Active: Trinexapac-ethyl
- NOT currently registered in Canada
- Anticipated Mid-2019 registration (2020 growing season)

Agronomic Management Practices to Reduce Lodging in Spring Wheat

Small Plot Study 2018 - 2019

Determine how agronomic management alters crop canopy structure and development, and resulting lodging and grain yield and quality

- Varietal Selection
- Nitrogen Management
- Planting Density
- PGR Application
- Management Interactions

Variety x N Management x PGR

Experiment #1

Varieties (3):

- Brandon (CWRS)
- Prosper (CNHR)
- Cameron (CWRS)

Nitrogen Management (5):

- Check:
- Standard Rate for high yield:
- Reduced Rate:
- Split N Application:
- Controlled Release N:

o lbs N/ac 140 lbs N/ac 70 lbs N/ac 70 + 70 (Flag Leaf) lbs N/ac 40:100 urea:ESN blend lbs N/ac

Plant Growth Regulator (+/-)

- Chlormequat chloride (Manipulator)
 - Gibberellic acid biosynthesis Inhibitor

N Timing x Plant Density x PGR

Experiment #2

Nitrogen Timing (2)

- Entirely at planting (140)
- Split application (70+70 FL)

Plant Density (3)

- Low (150 plant/m²)
- Recommended (250 plants/m²)
- High (350 plants/m²)

Plant Growth Regulator (+/-)

- Chlormequat chloride (Manipulator)
 - Gibberellic acid biosynthesis Inhibitor

Preliminary Results: Stalk Strength

- Collaboration with U of Minnesota
- Measured at Maturity
- Measures resistance to displacement from vertical position

Preliminary Results: Stalk Strength

Experiment 1

Preliminary Results: Stalk Strength

Experiment 2

No significant interaction between plant density and N timing or PGR

No significant Interactions between Variety, N Management and PGR

Experiment 1

No significant Interactions between Variety, N Management and PGR

Experiment 1

No significant Interactions between Variety, N Management and PGR

Experiment 2

No significant interaction between plant density and N timing or PGR

Experiment 2

No significant interaction between plant density and N timing or PGR

What we learned from 2018:

- We currently cannot relate management practices to field lodging due to lack of lodging during the 2018 Season
- Reducing seeding rates and PGR applications (spring applied N only) increased stalk strength (Exp. 2)
- Grain yield was increased by PGR application in Exp. 1 only
- Grain protein content was increased by split N applications, but decreased by PGR applications and reduced rates of N.

LOTS of Data Still to Come

<u>Nitrogen Use Efficiency</u>: N uptake and partitioning patterns <u>Canopy Structure</u>: Heights, tillering, dry matter partitioning <u>Plant Morphology</u>: Stem diameter, internode length, structural rooting width and depth <u>Stem Structural Composition</u>: Lignin, Cellulose, Hemicellulose

2019 Field Season

Acknowledgements

- Manitoba Wheat and Barley Growers Association
- Andy Keen
- U of M Ian Morrison Research Station: Alvin Iverson
- Engage Argo
- Manitoba Agriculture
- Koch Fertilizer
- U of MB Dept. of Soil Science: Lanny Gardiner, Megan Bourns
- Corinne Bernard, Patrick Muller, Brandi Van de Velde, Katrina Van de Velde
- Codi Hennan, Stephanie Dheilly, Berni Jungreithmeier, Nate Ort

Amy Mangin Dept. Plant Science University of Manitoba Ummangia@MyUmanitoba.ca (204) 384-1196

Questions?