Soybean Response to Potassium Fertility and Fertilizer in MB

Megan Bourns and Don Flaten, Dept. Soil Science, Univ. of Manitoba, R3T 2N2; John Heard, Manitoba Agriculture; Greg Bartley, Manitoba Pulse and Soybean Growers

Harvested Acres of Major MB Crops

Average Annual K₂O Removal per Harvested Acre

Annual K₂O Removal

http://www5.statcan.gc.ca/cansim/a47

Annual K₂O Removal

http://www5.statcan.gc.ca/cansim/a47

Annual K₂O Removal

http://www5.statcan.gc.ca/cansim/a47

Current Recommendations

According to the Manitoba Soil Fertility Guide:

STK level	Recommendation
>100 ppm	No additional K
50 – 75 ppm	30 lb K ₂ O/ac broadcast & incorporated
<25 ppm	60 lb K ₂ O/ac broadcast & incorporated

- Thresholds & rates identical to K recommendations for wheat & canola, which remove K at much lower rates than soybeans
- MB sufficiency thresholds and recommendations for soybeans are lower than those for ND, MN and Ontario

Current Recommendations

According to the Manitoba Soil Fertility Guide:

Recommendation	
No additional K	
30 lb K ₂ O/ac broadcast & incorporated	
60 lb K ₂ O/ac broadcast & incorporated	

- Thresholds & rates identical to K recommendations for wheat & canola, which remove K at much lower rates than soybeans
- MB sufficiency thresholds and recommendations for soybeans are lower than those for ND, MN and Ontario

Research Objectives

- 1. Determine the frequency of yield response to K fertilizer across a range of soil test K levels and soil types
- 2. Assess the effectiveness of different combinations of K fertilizer rates and placements for increasing soybean seed yields
- 3. Investigate capacity for MB soils to retain added K in nonexchangeable forms that may not be plant available

Research Objectives

- 1. Determine the frequency of yield response to K fertilizer across a range of soil test K levels and soil types
- 2. Assess the effectiveness of different combinations of K fertilizer rates and placements for increasing soybean seed yields
- 3. Investigate capacity for MB soils to retain added K in non-exchangeable forms that may not be plant available

Two groups of experiments

- on-farm field scale trials in conjunction with MPSG
- small plot field trials

On-farm Trial Methods

- In conjunction with MPSG
- Treated and untreated strips
 - Either 60 lb K₂O/ac pre-plant/side/mid row banded or 120 lb K₂O/ac broadcast and incorporated
- STK levels ranged from 52-235 ppm
- Soil: sandy, loamy, organic peat
- Achieve <u>Objective #1</u>:
 - Frequency of response across the sites
 - Validate STK thresholds

MPSG on-farm K fertility 2017 trial locations

On-farm Trial Methods

To complement the STK measurements:

- Midseason paired soil and plant tissue samples
 - Compare relatively good and relatively poor growth areas
 - Analysis in progress
- Hand harvest samples from the midseason sampling locations
 - Analysis for seed K concentration in progress

Small Plot Trial Methods

2017 Spring STK Values		
Site	STK (ppm)	
Elm Creek	101	
Haywood	61	
St. Claude	96	
Portage	65	

- In 2017, 4 small plot sites established in commercial fields with varying STK levels (targeting <100 ppm)
- Main purpose is to address Objective #2:
 - Effectiveness of different KCl rate/placement combinations for increasing seed yield
- 6 combinations of potash rates & placements
 - 30 or 60 lb K₂O/ac sidebanded
 - 30, 60 or 120 lb K₂O/ac broadcast and incorporated
 - Control (0 added K)
- All plots planted at 30 inch row spacing

- 1. Ammonium acetate extractable soil test K from field-moist and air dried samples
 - Increase/decrease in extractable K as a result of the drying process:

- 1. Ammonium acetate extractable soil test K from field-moist and air dried samples
 - Increase/decrease in extractable K as a result of the drying process:

- 1. Ammonium acetate extractable soil test K from field-moist and air dried samples
 - Increase/decrease in extractable K as a result of the drying process:

- 1. Ammonium acetate extractable soil test K from field-moist and air dried samples
 - Increase/decrease in extractable K as a result of the drying process:

- 1. Ammonium acetate extractable soil test K from field-moist and air dried samples
 - Increase/decrease in extractable K as a result of the drying process:

Soil Test K: dry vs. moist soil?

Soil Test K: dry vs. moist soil?

2. K supply rates in the field

• Measured with Plant Root Simulator (PRS) probes

*PRS probes are a registered trademark of Western Ag Labs

PRS Probe K Supply Rates

- 3. Midseason soybean K nutrition status
 - Tissue samples

Midseason Soybean K Nutrition Status

- Midseason tissue samples (R2)
 - Critical K concentration
 - Uppermost mature trifoliate leaves
 - Stem samples
 - K uptake
 - Whole plant
- Tissue sampling coincided with second PRS probe burial
 - Look at relationship between K supply rates and plant K uptake

June 30th: Early season K deficiency symptoms observed at Haywood (V3)

K deficiency symptoms present in both the control plots of our site, and the farmer's field (R6)

K deficiency symptoms present in both the control plots of our site, and the farmer's field (R6)

Responsive???

Preliminary Conclusions

- On-Farm Trials:
 - K responses infrequent and unrelated to STK
- Small Plot trials
 - No significant K response at any site

Preliminary Conclusions

- On-Farm Trials:
 - K responses infrequent and unrelated to STK
- Small Plot trials
 - No significant K response at any site

So...now what????

Next Steps

- Complete analysis of 2017 data
 - Small plots: midseason tissue K and uptake, further analysis of PRS supply rate data, seed K concentration
 - OFTs: midseason STK and tissue K concentrations, seed K concentration from hand harvested samples
- Repeat small plot and on-farm trials in 2018
- Explore soil-K dynamics
 - K fixation/adsorption
 - K supply
- K responsiveness of soybeans vs. barley

Acknowledgements

- Manitoba Pulse and Soybean Growers
- Western Grains Research Foundation
- Grower Cooperators
- Agrium
- Monsanto-Dekalb
- Western Ag Labs
- University of Manitoba
- University of Manitoba Graduate Fellowship
- Manitoba Graduate Scholarship
- Don Flaten, John Heard, Greg Bartley, Brent Wiebe and Laryssa Stevenson
- Technical support: Trevor & Lanny
- Summer help: Amy, Kris, Meghan and Joel

Contacts

Megan Bourns (@meg_bourns) 204-599-0980 bournsm@myumanitoba.ca

Greg Bartley 204-751-0219 greg@manitobapulse.ca