Phosphorus Management: Questions of Balance

Dr. Don Flaten, Professor Dept. of Soil Science, Univ. of Manitoba

AGVISE Soil Fertility Seminars January 2018

P Balance Issues

- 1. Short term vs. long term P management strategies
- 2. Crop production vs. environmental protection
- 3. Environmental challenges for P vs. other environmental challenges

Why is phosphorus balance important?

Food - P is a unique element that is essential for almost all life

<u>Water</u> - small amounts of excess P cause big problems with water quality

Examples of molecules that are vital for life and that require P

genetic coding & control

P Management in Corn & Soybeans in Manitoba

Corn Production in Manitoba

- Grain corn acreage is increasing in MB
- Short growing season and cold soils at planting
- Often planted on land with canola in rotation
- Conservation tillage an important BMP

Corn Rotation Study: Starter P & Zn

Fertilization strategies for corn grown after canola (non-mycorrhizal) vs. soybean

Corn Rotation Study: Site Information

	Planting Date	Harvest Date	Olsen-P (ppm)	DTPA-Zn (ppm)
2015 Sites				
Carman, MB	May 25	Oct. 15	19	1.50
Stephenfield, MB	May 26	Oct. 14	6	0.82
2016 Site				
Carman, MB	May 12	Oct. 05*	9	1.91

* Carman 2016 site was hand harvested due to wind damage and green snap.

Corn Hybrid: DKC 26-28RIB (2150 CHU)

Corn Rotation Study Treatments

Crop Treatments - Canola or Soybeans

Fertilizer Treatments (sidebanded 2" by 1" at planting)

Control 1. No P Check

MicroEssentials SZ (12-40-0-10S-1Zn)

4. $27 P_2O_5$ 0.68 Zn 6.8 S lbs/ac 5. $54 P_2O_5$ 1.35 Zn 13.5 S lbs/ac

Corn Rotation Study: Early Season Response to Starter

MAP 27 lb P_2O_5/ac

No P Check

P deficiency symptoms at V3

Silking differences as compared to control plots

Site-year	Maturity Advance (days)	Fertilizer and Crop		
Carman 2015	+2 to 3	All fertilizer treatments, corn on canola		
Stephenfield 2015	ns	ns		
Carman 2016	+2 to 7	All fertilizer treatments, regardless of crop		

Earlier tasseling and taller corn plants with spring sidebanded 27 lb P_2O_5/ac as MAP (L) and 27 lb P_2O_5/ac as MESZn (R) vs. control (M) at Carman following canola stubble

Corn Strip Till Study – P Timing & Placement

P fertilization strategies for corn planted in strip tillage vs. conventional tillage

Corn Strip Till Study: Site Information

	Planting Date	Harvest Date	Olsen-P (ppm)	Residue
2015 Sites				
Carman, MB	May 25	Oct. 16	8	Wheat
Portage la Prairie, MB	May 26	Oct. 19	11	Barley
2016 Sites				
Carman, MB	May 12	Oct. 5*	5	Wheat
Portage la Prairie, MB	May 16	Oct. 6*	14	Wheat

*Carman 2016 site was hand harvested due to wind damage and green snap. *Portage 2016 sites was hand harvested due to hail and black bird damage.

Corn Hybrid: DKC 26-28RIB (2150 CHU)

Corn Strip Till Study: 2 Previous Tillage Treatments

Corn Strip Till Study: 5 Fertilizer Treatments (lbs/ac, spring (2" by 1") and fall application (4-5"))

CONTROL

1. No P Check

MAP (11-52-0) Only

2.	27 P ₂ O ₅	SPRING SB
3.	54 P ₂ O ₅	SPRING SB

4.	27 P ₂ O ₅	FALL	DB
5.	54 P ₂ O ₅	FALL	DB

Corn Strip Till Study

Corn Early Season Biomass (V4) 2015 - 2016

Corn Strip Till Study

Silking differences as compared to control plots

Site-year	Maturity Advance (days)	Fertilizer
Carman 2015	+2	All fertilizer treatments
Portage la Prairie 2015	ns	ns
Carman 2016	+3 to 4	Both rates of spring side-banded MAP
Portage la Prairie 2016	ns	ns

Corn Strip Till Study

Kernel Moisture at Harvest 2015 - 2016

Corn Strip Till Study: Summary

Good News...

Corn planted in strip till yielded as well as corn planted in conventional till and had similar grain moisture.

Manitoba Soybean P Study #1: Effects of P Fertilizer Rate & Placement on Plant Stand and Seed Yield

Manitoba Soybean P Study #1: Effects of P Fertilizer Rate & Placement

- Half of the sites tested 10 ppm or less for Olsen P (v. low-low)
- 3 rates of P₂O₅ (0, 40, 80) applied as MAP in SR, SB, or B'cast
- Opener type: knife or disc with row spacing from 7 to 12" (low SBU)

					Row	Seeder
Site	Ol	sen P (pp	m)	Soil Texture	Spacing	Opener
	2013	2014	2015		Inches	Туре
Roseisle	N/A	4 (VL)	4 (VL)	Sandy Loam	8	Knife
Melita	3 (VL)	5 (L)	7 (L)	Sandy Clay Loam	9.5	Knife
Brandon	5 (L)	6 (L)	5 (L)	Clay Loam	8	Knife
Carman	N/A	15 (H)	7 (L)	Sandy Clay Loam	8	Knife
Roblin	7 (L)	22 (VH)	8 (L)	Clay Loam	9	Knife
Beausejour	8 (L)	13 (M)	7 (L)	Heavy Clay	9	Disc
Arborg	14 (M)	22 (VH)	14 (M)	Silty Clay	9	Disc
St Adolphe	23 (VH)	25 (VH)	71 (VH)	Heavy Clay	7.3	Knife
Portage	34 (VH)	18 (H)	10 (L)	Clay Loam	12	Disc
Carberry	44 (VH)	11 (M)	15 (H)	Clay Loam	12	Disc

Effect of P rate and placement on soybean seed yield for 28 site years in Manitoba

-			
		Year	
	2013	2014	2015
# Sites	8	10	10
Mean Seed Yield (bu/ac)	46	42	51
Control Seed Yield (bu/ac)	23 - 66	18 - 60	37 – 65
# Sites with Yield <u>Increase</u>	0	0	1*
# Sites with Yield <u>Decrease</u>	2**	0	0
Change in Yield	-29 to 36%	0	+15%

* Seed yield increased by 40 and 80 lb P_2O_5 /ac at Roseisle 2015

** Seed yield reduced by 80 lb P_2O_5/ac seed-placed, at Melita and Carberry in 2013

Why only 1 positive response to P in 28 site years? Soybeans are efficient feeders for soil P in Manitoba soils

Manitoba Soybean P Study #2: Soybean response to starter P fertilizer and soil P fertility from <u>historic</u> fertilization practices

- Located on three sites for a previous long term P fertilization trial that received 3 rates of MAP fertilizers applied each year, from 2002 until 2009, with total cumulative applications of 320, 640 and 1280 lbs P_2O_5 /acre over the 8 year period
- No fertilizer P added from 2010-2012
- Soybean planted on the same sites in 2013, 2014, 2015

		Soil Test Olsen P (ppm)			
Historical P Applied (Ib P/ac) (Ib P ₂ O ₅ /ac)		Brandon	Carman	Forrest	
0	0	11	20	7	
143	320	22	31	15	
285	640	33	53	22	
570	1280	54	91	40	

Soybean Seed Yield 2013

- no yield response to starter P or historic P fertility

With side-banded starter P (18 lb/ac) Without starter P

Soybean Seed Yield 2014

- no yield response to starter P or historic P fertility

With side-banded starter P (18 lb/ac, for 2nd year) Without starter P

Soybean Seed Yield 2015

- no yield response to historic P fertility

Summary and Conclusions for Manitoba Soybean P Study #2

- The soil test threshold for soybean yield responses to long term soil P fertility and/or P fertilizer appears to be very low in Manitoba soils, lower than those in the soils tested so far (7, 11 & 20 ppm Olsen P)
- Observations of higher soybean yields on Manitoba soils with higher P fertility (e.g., manured soils) may be due to other factors

Soybeans may not "care" about P fertilizer, but what about the crop after soybeans?

The phosphorus deficit hangover ...

Balancing P application with crop removal is essential to avoid excessive accumulation or depletion of P in soil

Effect of legume green manures on long term wheat yields in SK

Cowell & Doyle 1993
Dr. Martin Entz's long term organic rotation at U of MB demonstrates the importance of P replacement

Majority of Manitoba Soils Are Deficient in P According to % Less Than Critical Level

% Soil Samples with Phosphorus less than 10 ppm

Crop Removal and Replacement of P in Manitoba (1965-2016)*

P₂O₅, tonnes

*John Heard (Manitoba Agriculture) with data from Statistics Canada data, does not include additions of manure or removal of straw P

UNIVERSITY of Manitoba

Phosphorus Balance in ND, SD, MN

IPNI. 2012. A Nutrient Use Information System (NuGIS) for the U.S. Norcross, GA. January 12, 2012. Available on line >www.ipni.net/nugis<

Manitoba's new recommendation for P fertil'n strategy: Phosphorus balance should be managed through the rotation ... not just on a single crop basis

- What is the current soil P level?
 - If excess, can draw down by using only starter P
 - If near optimum, can balance input and removal
 - If low, may want to build by applying fertilizer or manure P in excess of crop removal

A fertilization concept to move soil P levels into an optimum range over time

🔣 🗟 🤊 • 🗠 • 🛕 🗟											
File Home Insert Page Layout Formulas Data Review View Acrobat											
ĥ	Cut Calibri - 1	1 · A A	= = =	≫ - 📑 Wrap	Text Gene	eral 👻		Normal	Bad	Good	*
Paste	B I U -	• <u></u> • <u>A</u> •		🗐 📰 Merge	e & Center 👻 💲	- % • <u>*.0</u> .00	Conditional Form	nat as Neutral	Calculation	Check Cell	
Clipboard 🖼 Font 🖬				Alignment	5	Format		Formatting Table		Styles	
K19 • (<i>f</i> _x											
A	В	С	D	E	F	G	Н	I J	K	L	Μ
1	1 Phosphorus Balance Calculation for a Rotation (Version 4 - October 1, 2014)										
	•	Typical	Yield	Р	P Rem	noved*	Annual	Notes: Do	pes not accou	Int for nut	rients
2	Crop	Yield	Units	Applied	per unit	per acre	Balance	removed	when straw o	or chaff is	
3	-		(lb P-O-/ac)					removed	or burned		
4	HR Spring wheat	60	bu/ac	30	0.59	35	-5	removed			
5	Winter wheat	75	bu/ac	30	0.55	38	-8				
6	Barlov	/3	bu/ac	30	0.31	0	0				
7	Date				0.42	0	0				
/	Canala	40	bu/ac	20	1.04	42	22				
8	Canola	40	bu/ac	20	1.04	42	-22				
9	Soybeans	40	bu/ac	10	0.84	34	-24				
10	Peas		bu/ac		0.69	0	0				
11	Flax		bu/ac		0.65	0	0				
12	Corn (grain)		bu/ac		0.44	0	0				
13	Other**				0.00	0	0				
14	Total for Rotation		1	90		149	-59				
16	16 Fill in any of the blue cells for typical rotation, yields, and P appl'n										
17	17 *P removal figures are estimates from the Manitoba Soil Fortility Guide										
18	**For nutrient removal in other crons see table in next worksheet										
10	rornatientrenio	varmoti	iei ciops			AND					
20									<u>_</u>		
	∠∪ Interactive P balance worksheet Nutrient removal table										
Ready											
	0 C Universit	Phospho	C:\Users\	C:\Use	ers\ 📔 C:\l	Jsers\ 📔 C:\	\Users\	Inbox 💽	Cowell P 💦 06	30 3C 🛛 🔛 🛚	Aicrosof

Almost all fertilizer P in the Canadian Prairies is banded under soil surface, in or near seed, at planting

Agronomically beneficial, especially in cold soils in areas with short growing season

Environmentally beneficial because P placed under soil surface after spring snowmelt runoff

P sufficiency strategy for short term (fertilizing for optimum economic responses in first year after application) often decreases P fertility for long term

	IZER P	HOSPHAT	$TE(P_2O_3)$	RECOMME	NDED	(lb/ac)										
Soi (sodiur C	l Phosph n bicarb Disen P to	horus ionate or est)	Cereal	Corn Sunflower	Car Musta	ola d Flax	Bucky Fabal	/heat eans	Pota	atoes	Peas L Field I Soyb	entils eans† ans†	Legume	forages	Perenni fora	al grass ges
ppm	lb/ac	Rating	S1	Sb ²	B3	S1	B ³	S1	B3	PPI ⁴	B3	S1	seeding PPI ⁵	Est. stand BT ⁶	seeding PPI ⁵	Est stan BT
0	0	VL	40	40	40	20	40	20	55	110	40	20	75	55	45	30
	5	VL	40	40	40	20	40	20	55	110	40	20	75	55	45	30
5	10	L	40	40	40	20	40	20	50	100	40	15	75	55	45	30
	15	L	35	35	35	20	35	20	45	90	35	15	65	50	35	20
10	20	М	30	30	30	20	30	20	45	90	30	10	60	40	30	20
	25	М	20	20	20	20	20	20	40	80	20	10	50	35	20	15
15	30	н	15	15	15	0	15	20	35	70	15	0	45	30	15	10
	35	н	10	10	10	0	10	20	30	60	10	0	30	20	0	0
20	40	VH	10	10	10	0	10	20	30	60	10	0	30	20	0	0
20+	40+	VH+	10	10	10	0	10	20	30	60	10	0	25	20	0	0

COVERING NEW GROUND

1th

Manitoba 🦻

Following short term "P sufficiency" strategy for seed-row P from MB Soil Fertility Guide leads to P deficits

P balance for 4 year rotation:

Following MB Soil Fertility Guide Rec. for 10 ppm Olsen P

		Р	Р	Annual				
Crop	Yield	Applied	Removed*	Balance				
	(bu/ac)		(lb P ₂ O ₅ /ac)					
GP spring wheat	60	30	35	-5				
Canola	40	20	40	-20				
Winter wheat	75	30	38	-8				
Soybeans	35	10	30	-20				
4 Year Total		90	143	-53				
* Using 0.59, 1.0, 0.51, 0.85 lb P_2O_5 /bu respectively for grain only								

Olsen P also followed P balance in Alberta and Manitoba soils after 8 years of P applications in a durum-flax rotation

- Large increases in Olsen P occurred with high P rates
- Olsen P declined when no P applied
- At 40 lb phosphate/acre/year, Olsen P was maintained at most sites (but flax P removal is low)
- Surplus P to raise Olsen P by 1 ppm:
 - 16-23 lb P_2O_5 /ac at Carman
 - 29-32 lb P_2O_5 /ac at Carstairs
 - 27-35 lb P_2O_5 /ac at Brandon
 - 21-25 lb P_2O_5 /ac at Ft. Sask.
 - 32-41 lb P₂O₅/ac at Phillips

Grant et al. unpublished

Recommended Strategies for Maintaining P Fertility in Soybean Fields

- Apply sufficient P in sidebands or midrow bands to match crop removal on annual basis
- Use a rotational fertilization strategy over several years :
 - Add extra P to crops in rotation that tolerate high rates of seed-placed P
 - Periodically band P into soil during fall tillage ... eg. MAP with AS prior to canola, which responds to fert. P & N
 - Build soil P to target level, but avoid excess accumulation, eg. manure applied at rate to meet crop N requirements will provide P benefit for several years

Rotational Fertilization Strategies for P Balance

Annual & Overall P Balance for P Strategies in 4 Year Rotation									
			Max	N-Based	P Maint.				
		MB	Seed	Manure	with				
Crop	Yield	SFG	Row P	in 1st yr	Sideband				
	(bu/ac)		(lb I	P ₂ O ₅ /ac)					
GP spring wheat	60	-5							
Canola	40	-20							
Winter wheat	75	-8							
Soybeans	35	-20							
4 Year Total		-53							
* Using values of 0.5	9, 1.0, 0.51,	0.85 lb P	$_2O_5/bu res$	pectively for	grain only				

Why not simply broadcast P?

Broadcasting P fertilizer, especially in conservation tillage systems leaves water soluble P on the soil surface ... prone to runoff ... especially if applied in fall

An invitation to regulation ...

Why is phosphorus balance important?

Food - P is a unique element that is essential for almost all life

<u>Water</u> - small amounts of excess P cause big problems with water quality

Main Problem: Excess P and "Algae"

"Eutrophication" occurs at very low conc'ns of P (20-50 ppb):

- Blue-green "algae" (cyanobacteria)
- Oxygen Depletion
 - Fish kills
- Nerve and Liver Toxins
 - Livestock & wildlife mainly at risk

International Joint Commission Report on Improving Water Quality in Lake Erie – February 2014

Reducing Phosphorus Loadings and Harmful Algal Blooms

A Report of the Lake Erie Ecosystem Priority February 2014

"The control of phosphorus in agricultural operations must focus on changes in agricultural practices that have been implemented in recent decades, such as increased prevalence of fall application of nutrients, applying two years' worth of fertilizer in a single application, and broadcast application."

page 7 of International Joint Commission (2014). A Balanced Diet for Lake Erie: Reducing Phosphorus Loadings and Harmful Algal Blooms. Report of the Lake Erie Ecosystem Priority.

Excess P & toxic blue-green algae in Lake Erie shuts down water supply to Toledo, Ohio – August 2014

Public Concern About Agricultural Nutrients and Water Quality is Increasing

WINNIPEG FREE PRESS, TUESDAY, DECEMBER 10, 2002

LOCAL A11

Lake Winnipeg pollution blamed on farm runoff

By Helen Fallding

R ARM runoff may be the biggest source of pollution in Lake Winnipeg and the province's southern rivers, according to a new study by Manitoba Conservation.

About three-quarters of the phosphorus added to the Assiniboine and Red rivers as they passed through Manitoba from 1994 to 2001 had washed off the land. The figures are almost as bad for nitrogen, which combines with phosphorus to promote the growth of algae blooms.

The blooms are bad for fish and wildlife and can produce dangerous toxins.

University of Winnipeg biologist Eva Pip, who has read the report, said many people assumed municipal sewage was the biggest culprit behind the deteriorating health of Lake Winnipeg.

"There's always been finger-pointing... but now that we have some actual numbers, this gives us a starting point which we can use to start addressing the problem."

In a previous study completed last year, Manitoba Conservation staff concluded that nitrogen and phosphorus loads in Lake Winnipeg increased 13 and 10 per cent respectively over the last three decades as a result of changes in the Red River basin. "Those are very significant values in

a short time," Pip said. A Lake Winnipeg snail recently declared endangered is an early warning sign that the lake is in trouble, she said.

Lake Winnipeg has had very bad algae blooms for the last five years, including some this summer at Victoria Beach and on the western shore as far north as the Jackhead reserve, Pip said.

She is calling for more regulation of the nutrients farmers apply to their land.

The latest Manitoba Conservation study, led by Alex Bourne, did not separate the effects of chemicals from manure or natural sources.

Manitoba's livestock farmers are required to monitor the amount of nitrogen they apply in manure, but phosphorus is regulated only in Quebec.

Livestock farmers have long complained they are subject to much greater scrutiny than the majority of their neighbours who use chemical fertilizer — soon to be regulated in Ontario after the Walkerton contaminated water scandal.

Keystone Agricultural Producers vice-president David Rolfe said quality assurance programs that require farmers to better manage their fertilizer if they want to be certified might be a better approach than more regulation.

Manitoba's water quality manager

Dwight Williamson said a discussion paper should be out within six months on setting water quality objectives in the Assiniboine, Souris and Qu'Appelle rivers.

Manitoba Agriculture staff already have extension programs encouraging farmers to invest in soil testing so they don't waste fertilizer and to use low-till agriculture to keep water on the land. "We do this all the time," John Heard said.

When fertilizer prices are high, farmers have more incentive to keep their fertilizer use to a minimum, he said.

Pip said the move to drain more farmland — supported by increased government dollars — is also contributing to runoff problems.

Manitoba has no control over pollutants in the rivers before they cross the U.S. and Saskatchewan borders.

Winnipeg's wastewater treatment plants and sewers added more than 4,000 tonnes of nitrogen to the Red River a year, according to the Manitoba Conservation study -11 per cent of the total load in the river at Selkirk.

Pip said the nutrient load will be worse now that the city has added orthophosphate to drinking water to deal with elevated lead levels from old pipes.

> helen.fallding@freepress.mb.ca

Over-fertilizing of fields is common in livestock-abundant areas.

Over-fertilizing polluting province's water bodies

By Helen Fallding

FARMERS in livestock-intensive areas of Manituba are over-fertilizing their land, potentially contributing to water pollution as far away as Lake Winnipeg.

In an \$81,000 study for the Manitoba Livestock Manure Management Initiative, DGH Engineering found the nutrients nitrogen and phosphorus building up in soils in the rural municipalities of Hanover and La Broquerie near Steinbach.

In two other municipalities where there is less livestock production — Roland, south of Carman, and Sifton in western Manitoba — there was less buildup.

Excess nutrients not taken up by crops wash off fields into streams and rivers, with Red River nutrients eventually working their way to Lake Winnipeg. The lake has been plaqued with had algae blooms in recent years that are toxic to fish and wildlife and interfere with the enjoyment of summer beaches.

DGH senior engineer Doug Small

said farmers applying manure to their fields from livestock barns are also applying some chemical fertilizer.

In Roland, fertilizer inputs average 85 kilograms per hectare of nitrogen and 14 kilograms per hectare of phosphorus, but the numbers in Hanover are 98 for nitrogen and 32 for phosphorus

"We're not saying it's an immediate serious crisis," Small said. "There's an issue here that needs to be addressed for long-term sustainability."

Only about five per cent of Manitoba farmland receives animal manure.

Small said the obvious solution is for farmers using manure to cut back more on expensive chemical fertilizers — something that would save

them money and conserve the natural gas used to make fertilizer.

The owners of large livestock operations are required by the province to test the soil where their manure is applied to monitor levels of nitrogen, but phosphorus is not yet regulated.

D helen.fallding@freepress.mb.ca

Importance of Water Quality

The Red River winds through a sweeping landscape of farms, carrying chemicals downriver that are poisoning <u>Lake Winnipeg</u> – a fate that Minnesota's other rivers could face.

Lake Winnipeg Basin

- 2nd largest watershed in Canada (380,000 square miles)
- over 50% of the watershed is used for agriculture
- relatively dry climate, where runoff dominated by snowmelt over relatively level landscape
- home to 6.6 million people in 4 provinces and 4 states

Lake Winnipeg's P comes from many relatively small sources

Manitoba Water Stewardship. 2006. Questions and Answers: Water Quality Management Zones for Nutrients (data are estimated for 1994-2001)

Managing P loss with traditional soil and water conservation BMPs

Effects of conservation tillage on water quality in South Tobacco Creek watershed:
✓ decreased total nitrogen export by 68%
✓ decreased sediment export by 65%
× but P was a different story ...

South Tobacco Creek twin watershed study: P loss from conservation tillage was <u>greater</u> than from conventional tillage ... because erosion of soil particles was a minor contributor to P loss in both systems

In Oklahoma, conservation tillage increased losses of dissolved P, but reduced total P loss from wheat by 95% ... where most of the P loss was by erosion

El Reno, OK - Sharpley and Smith, 1994

Journal of Environmental Quality

TECHNICAL REPORTS

SURFACE WATER QUALITY

Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?

Helen P. Jarvie,* Laura T. Johnson, Andrew N. Sharpley, Douglas R. Smith, David B. Baker, Tom W. Bruulsema, and Remegio Confesor

Abstract

Cumulative daily load time series marked a step-change increase phosphorus (SRP) loads entering from three major tributaries: the Rivers. These elevated SRP loads last 12 yr. Empirical regression r the contributions from (i) incr weather and precipitation pat delivery (the combined effects of and/or increased transport effici fractions). Approximately 65% of 2002 was attributable to increa runoff volumes accounting for SRP delivery occurred concomita P budgets. However, within these long-term, largescale changes i

"Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002."

tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our Priority was established in response to growing challenges relating to phosphorus (P) enrichment, compounded by climate change, and aquatic invasive species (IJC, 2014); in February 2016, the governments of Canada and the United States announced new P

Fresh frozen green plant residues at greatest risk for simulated snowmelt runoff P losses

Elliott, J. 2013. Evaluating the potential contribution of vegetation as a nutrient source in snowmelt runoff. Can. J. Soil Sci. 93:435-443.

Freezing, thawing increases P loss from cover crops on manured soil: USDA research in PA

Perennial alfalfa forage loses 2.6 x as much P in snowmelt runoff as conventionally tilled annual crops (8 site years)

South Tobacco Creek Model Watershed – Liu et al. J. Environ. Qual. 43:1644–1655 (2014)

WI studies show that P losses from frozen or dried alfalfa under laboratory conditions did not match losses under field conditions

Lab Study

Field Study

bility level.

"Actual P losses likely depend on the timing and extent of plant freezing and drying and of precipitation events after freezing."

and natural runoff (dashed line) load at site 7, Oct. 2002 through

Sept. 2003. (*) Orthogonal comparison of full growth and paraquat treatment on cumulative DP load was significant at the 0.20 proba-

(Roberson and Bundy. JEQ 36:532-539 (2007)

Vegetated buffer strips in Manitoba not as effective as expected

Sheppard et al. CJSS 2006 (SE MB)

- VBS <u>reduced</u> runoff [TP] in 50% of cases,
- increased P in 18%, had no effect in 32%
- overall average ... only 4% reduction in runoff [TP]

Sheppard et al. 2011 & Habibiandehkordi et al. 2017

 No significant reduction in P with VBS in 45 of 54 seasonal measurements in Eastern-Interlake CD, Pembina Valley CD, and Little Sask. CD trials

In-stream and near-stream processes (eg. vegetated buffers and biological uptake) are minimal during snowmelt

Flow is often concentrated in only a small area of the buffer, overwhelming the nutrient retention system

UNIVERSITY of Manitoba

Barnyard vegetative filter strips: Ineffective outside growing season in Vermont

Schellinger & Clausen JEQ 1992

BMP effectiveness for reducing losses of <u>dissolved P</u> (Sharpley, adapted from Gitau et al. JSWC, 2005)

Balancing Benefits, Co-Benefits, and Trade-Offs

 Also, remember that P loss is only one of many objectives that agricultural practices must address to be sustainable

Balancing Benefits, Co-Benefits, and Trade-Offs

 No BMP, including conservation tillage, perennial forage or vegetated buffers is a cure-all, for all environmental issues and situations

- BMPs have different effects on different issues (eg. N vs P) in different environments (eg. rainfall on sloping land vs. snowmelt runoff on plains)
- Co-benefits are variable, but trade-offs are inevitable ... let's use knowledge to maximize cobenefits & minimize trade-offs

Balancing Benefits, Co-Benefits, and Trade-Offs

 Perhaps it's time to treat <u>environmental</u> health like <u>human</u> health ... with more effort to aim for improved overall health:

- Diagnose the correct <u>cause</u>
 - assess each case individually and comprehensively
 - identify the real cause of the most important problem(s)
- Prescribe the right <u>cure</u>
 - make sure the "cure" works
 - treat with precision
 - consider all the benefits
 - consider all the "side effects"
 - continuously monitor, adapt & fine tune the treatment
 UNIVERSITY OF MANITOBA

Overall Summary and Conclusions

 Starter P improves early season growth, advances maturity, and increases yield in corn, but has little benefit for soybean.

However, we need to add enough P to balance removal to maintain long term productivity for the whole crop rotation.

MAP 27 lb P_2O_5/ac

No P Check

Overall Summary and Conclusions, cont'd.

2. Careful management of P rate, placement & timing is critical for reducing the risk of P loss to surface water ...

especially considering that very small concentrations of P cause big problems with water quality ...

and some traditional soil and water conservation practices that <u>reduce</u> water erosion may <u>increase</u> the loss of dissolved P in Northern Great Plains watersheds

Overall Summary and Conclusions, cont'd.

3. We should be make sure that "beneficial management practices" are truly beneficial under local conditions ...

and aim for improving overall environmental health, being careful to consider all the co-benefits and trade-offs of beneficial management practices

Acknowledgements

- M. Rogalsky, G. Bardella, & J. Heard
- D. Lange, Y. Lawley, C. Grant, & R. Mohr
- David Lobb, Kui Liu, Kevin Tiessen, Sheng Li
- Jim Yarotski, Larry Braul, Erin Zoski, Gao Chen (AAFC)
- Jane Elliott, Nancy Glozier (Environment Canada)
- Kelvin Hildebrandt, Don Cruikshank, Bill Turner, Dale Steppler (Deerwood Soil & Water Mgmt Ass'n)
- Steve Sheppard (Ecomatters)
- B. Hellegards (Richardson Pioneer)
- C. Linde and C. Cavers (CMCD Ctr.)
- J. Kostuik (Parkland Crop Diversification Foundation)
- M. Svistovski (Agriculture and Agri-Food Canada)
- R. Burak & J. Pawluk (Prairies East Sustainable Ag Inst.)
- S. Chalmers (Westman Ag Diversification Organization)
- C. Autsema
- Manitoba Pulse and Soybean Growers Association
- Western Grains Research Foundation
- Canada-Manitoba Growing Forward 2 Program
- Agrium, Agvise Laboratories, BASF, Monsanto-Dekalb

