Potassium for Corn: Soil Testing and Yield Response in the Northern Plains

John S. Breker and David W. Franzen
NDSU Department of Soil Science

AGVISE Soil Fertility Seminar
March 14, 2017
Our Potassium Journey

• Potassium nutrition for corn
• Revising the recommendations
• Potassium rate study: 2015-2016
 – Soil test comparison
 – Yield response to fertilization
 – Sampling time for soil potassium
Potassium nutrition for corn

Deficiency symptoms

- Chlorosis, necrosis of outer leaf margin

- Mobile nutrient in plant
 - Expressed in lower leaves
Potassium nutrition for corn

Near Lisbon, ND (Aug. 2016)
Soil K: 47 ppm

Plot 106
0 K₂O/ac
174 bu/ac

Plot 107
150 K₂O/ac
226 bu/ac

John S. Breker, NDSU
Our Potassium Journey

• Potassium nutrition for corn
• Revising the recommendations
• Potassium rate study: 2015-2016
 – Soil test comparison
 – Yield response to fertilization
 – Sampling time for soil potassium
• Potassium mineralogy
Increase in ND corn/soybean acres

Acreage changes

Yield increase

Data source: USDA-NASS
Typical K removal in grain for principal crops at various yields

Change to corn/soybean production removing K at twice the rate
Soil samples with less than 150 ppm K

Fall 2016 samples (0-6” samples)

Data provided courtesy of AGVISE Laboratories, Northwood, ND.

The NDSU Extension Service does not endorse commercial products or companies even though reference may be made to trade names, trademarks or service names.
Revisiting potassium in North Dakota

• Increase in corn/soybean acreage
 – Higher yields, higher K export
• More soil tests below critical level
 – 1980: 3% of samples (Nelson, 1980)
 – 2010: 17% of samples (Fixen et al., 2010)
 – 2015: 16% of samples (IPNI, 2015)
• Potash price spike
 ~$150/ton (1980-early 2000s)
 $853/ton (2009)
Developing a recommendation: Find the soil test critical level

Image from https://courses.cit.cornell.edu/css412/mod3/ext_m3_pg3.htm

Yield related to amount of plant-available nutrient in soil
Soil testing for potassium

Standard method in North Central region:
1.0 M NH₄OAC (pH 7) extraction on dry soil

- Exchangeable K⁺
- Displaced K⁺
- NH₄⁺ ion
- Clay mineral surface
Scrutiny of soil K test method

Standard method in North Central region:
1.0 M NH$_4$OAC (pH 7) extraction on dry soil

• Effect of sample drying on extractable K
• Inconsistent yield responses to K fertilization
• Plant availability of nonexchangeable K
 – The K sandwich (a packed lunch)
• Seasonal soil test K variation
Study objectives

1. Evaluate corn yield response to K fertilization
2. Identify adequate soil K test method
 • Determine critical level
3. Assess seasonal soil K variation
Potassium rate trials

2015: 13 sites
2016: 6 sites
Study Timeline

Spring

- RCBD with four reps
 - Expt. Unit: 10 ft x 30 ft
- Urea, MAP, gypsum broadcast
- Six KCl (0-0-60) rates
 - 0, 30, 60, 90, 120, 150 lb K$_2$O/acre
 - Shallow incorporation (2-3 inches)
Study Timeline

Summer
- Soil samples
 - Biweekly: 0-6 inch
- Plant samples (2016)
 - V5: Whole plant
 - VT: Ear leaf

Fall
- Harvest one 30-foot corn row
- Yield, grain moisture, test weight
Soil test methods evaluated

- 1.0 M NH₄OAC (pH 7) extraction, 5 minute
 - Air-dried soil, ground
 - Field-moist soil, sieved
- Ion-exchange resin capsule, 168 hour incubation (UNIBEST, Inc.)
- Sodium tetraphenylboron extraction (Cox et al., 1999)
 - 5 minute, most reactive nonexchangeable K
 - 168 hour, total nonexchangeable K
- Soil mineralogy (ACT Labs, Ontario)
What K pools does a soil test target?

From McLean and Watson, 1985

Exchangeable K
K ions adsorbed onto clay surfaces

Nonexchangeable K
K ions trapped in wedge sites or interlayer spaces

The K sandwich

Tetraphenylboron: Releases interlayer-K

Resin: Equilibrate with exchangeable/interlayer-K

NH₄OAc
Dry soil: layers warp/collapse
Moist soil: field condition

From McLean and Watson, 1985
Our Potassium Journey

• Potassium nutrition for corn
• Revising the recommendations
• Potassium rate study: 2015-2016
 – Soil test comparison
 – Yield response to fertilization
 – Sampling time for soil potassium
Correlations among K extraction methods

<table>
<thead>
<tr>
<th>r</th>
<th>Dry K</th>
<th>Moist K</th>
<th>TBK 5min</th>
<th>TBK 168hr</th>
<th>Resin K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry K</td>
<td>1.00</td>
<td>0.96</td>
<td>0.94</td>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>Moist K</td>
<td></td>
<td>1.00</td>
<td>0.89</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>TBK 5min</td>
<td>Good correlation between NH$_4$OAC and 5-min TBK</td>
<td>1.00</td>
<td>0.88</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>TBK 168hr</td>
<td>TBK and resin methods not related, different mechanisms</td>
<td>1.00</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resin K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

Good correlation between NH$_4$OAC and 5-min TBK and resin methods not related, different mechanisms.
Sample drying increased NH$_4$OAc-extractable K

- Average: 1.26 times higher
- Range: 0.8-2.4
- Increase higher for low K soils

\[y = 0.94 + 24.2x^{-0.972} \]
\[R^2 = 0.37, \ P < 0.01 \]
Smectitic soils released more K

\[y = 1.01 + 0.0562x \]

\[r^2 = 0.45, \ P < 0.01 \]
And *then* drying got complicated…

Figure 1.—K extracted with neutral 1N NH₄Ac from soils that had been dried to various moisture levels after increments of KCl had been added.

From Scott et al., 1957
Our Potassium Journey

- Potassium nutrition for corn
- Revising the recommendations
- Potassium rate study: 2015-2016
 - Soil test comparison
 - Yield response to fertilization
 - Sampling time for soil potassium
Yield response prediction by soil test class

<table>
<thead>
<tr>
<th>Soil K test class (mg kg(^{-1}))</th>
<th>VL (0-40)</th>
<th>L (41-80)</th>
<th>M (81-120)</th>
<th>H (121-160)</th>
<th>VH (161+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sites in soil test class</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Number of sites with significant yield response</td>
<td>---</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Probability of significant yield response</td>
<td>---</td>
<td>67%</td>
<td>33%</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>

- Six of 14 sites below 150 ppm critical level responded (less than half)
Soil test K and yield response: NH$_4$OAc K on dry and moist soil

- Dry method still superior to moist method
Soil test K and yield response: Tetraphenylboron K, 5-min and 168-hr

• Not better than NH$_4$OAc methods
Soil test K and yield response: Resin K & %K saturation

- Resin method not significant, linear relationship
- K saturation not better than sufficiency level
Correlation between Soil Test K and Tissue K

Leaf stage V5 (whole plant)

\[Y = 3.4(1-3.56e^{-0.0327x}) \]

\[r^2 = 0.59, P < 0.01 \]

\[Y = 3.5(1-1.63e^{-0.0243x}) \]

\[r^2 = 0.59, P < 0.01 \]
Correlation between Soil Test K and Tissue K

Leaf stage VT (ear leaf)

Y = 0.0065x + 0.57
$r^2 = 0.83, P < 0.01$

Y = 0.0074x + 0.47
$r^2 = 0.83, P < 0.01$
Does tissue K help predict yield?

![Graph showing the relationship between tissue K and grain yield. The graph includes a scatter plot with data points and two regression lines. The R^2 values for the V5 and VT stages are 0.02 and 0.21, respectively.](image)
Does tissue K help predict relative yield response?
What good is tissue K analysis?

In-field comparison for deficiency diagnosis

From http://xkcd.com/1725/
Potassium Mineralogy: An Unexpected Journey

Primary minerals
- K-feldspar
- Mica
 - Biotite
 - Muscovite

Clays
- Illite (K supplier)
- Vermiculite (K fixer)
- Smectite (K fixer when dry)
Site analysis: K-bearing mineral content

Minerals

K-feldspar
Muscovite

5 %
Site analysis: Clay mineralogy
Does mineralogy help explain yield response?

Factor analysis:
Common factors between variables
• Mineralogy
• Relative Yield
Our Potassium Journey

- Potassium nutrition for corn
- Revising the recommendations
- Potassium rate study: 2015-2016
 - Soil test comparison
 - Yield response to fertilization
 - Sampling time for soil potassium
Sampling time: Sinusoidal pattern

Soil K trend
- Highest in spring
- Lowest late summer

2015: 12 of 13 sites followed sinusoidal pattern over time
Sampling time: Sinusoidal pattern

2016: Rainfall variability, not able to combine (Dry K, 5/6 sites)
Sampling time and soil K levels

- Soil K trends
 - Highest in late May or early June
 - Lowest in late summer
 - Begin to increase after physiological maturity

- Crop K uptake, soil water use, tissue leaching

- Sinusoidal pattern within year
 - Long-term sampling needed to establish year-to-year pattern
Summary

- Sample drying increased NH$_4$OAc K
 - Variable between soils, mineralogy
- Dry K test failed to predict half of responses
 - Dry K test best predictor of yield response
- Mineralogy and yield response not clear
- Soil K levels follow a sinusoidal pattern over time
Conclusions

• Dry K soil test not sufficient for predicting yield responses to fertilization
 – Moist K, TBK may not be any better

• Take soil samples at same time every year
 – Spring or fall sampling?

• Potassium is far from simple
Thank you!

Acknowledgements:
Kevin Horsager
Dr. Shiny Mathews
Dr. Lakesh Sharma
Eric Schultz
Austin Kraklau
Conner Swanson
Makenzie Ries

“Tartan” twinning of K-feldspar
“There is a lot that we know [about potassium]. I don’t know if it is all useful for making a recommendation.”

-Dr. Sylvie Brouder (Purdue Univ.), 2014 SSSA Meeting

