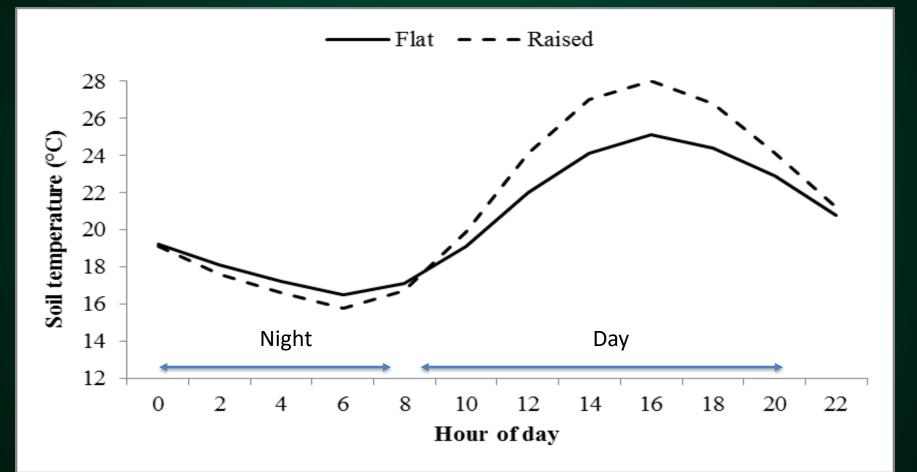
What have raised beds, subsurface water management, and N x S fertilization in common?

> Hans Kandel, NDSU Extension Agronomist

Soybean Productivity on Raised Seedbeds

Soybean Productivity on Raised Seedbeds



Soybean Productivity on Raised Seedbeds

•Evaluate soybean yield and response when grown on raised seedbeds compared with conventional tillage in flat land areas prone to soil water logging.

Hourly soil temperature for flat and raised seedbeds at Hitterdal, MN, in 2012.

Soybean Productivity on Raised Seedbeds

Soybean Seed Yield

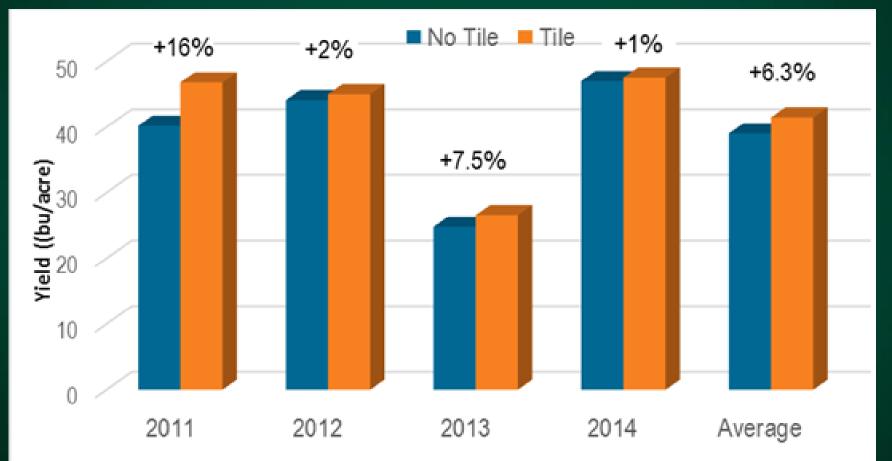
Tillage	Yield 2012 ¹	Yield 2013 ²	Yield 2014 ²
	Bu/acre	Bu/acre	Bu/acre
Flat	44.6	30.3	49.7
Raised bed	44.4	33.4	51.7
LSD	NS	2.0	1.8
		nod aaroog 5 laar	tiono

NORTH D

¹ Averaged across 5 locations.

² Averaged across 3 locations: tile and no tile in Fargo, and Casselton.

Soybean Productivity on Raised Seedbeds



Soybean Stand, Vigor and Yield 2013-2014

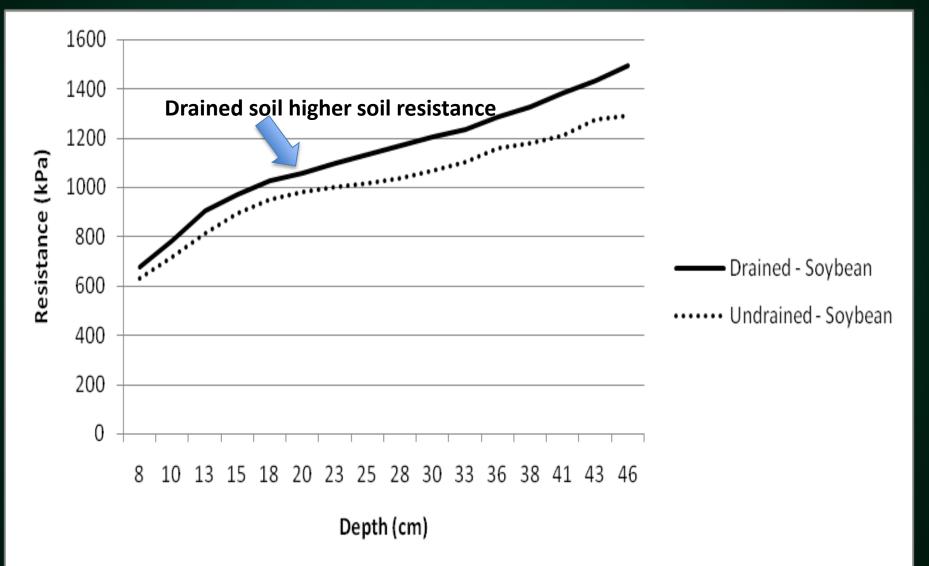
Tillage	Stand	Vigor	Yield 13- 14
	Plant/acre	(1-9) [9= best]	Bu/acre
Flat	105,650b	4.4b	40.4b
Raised bed	134,050a	5.9a	43.0a

¹ Averaged across 6 environments: tile and no tile in Fargo, and Casselton 2013-2014.

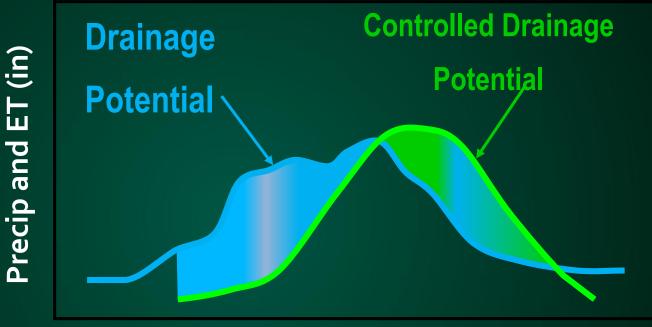
Soybean Seed Yield Raised Bed Study, No Tile and Tiled

Summary Study →Tile 6.3 % higher than no tile, including two dry years.

Summary Study \rightarrow Tile 6.3 % higher than no tile, including two dry years. → Raised Beds: Higher plant density, higher vigor score, taller plants, resulting in 6.4 % yield advantage.



Penetrometer Readings



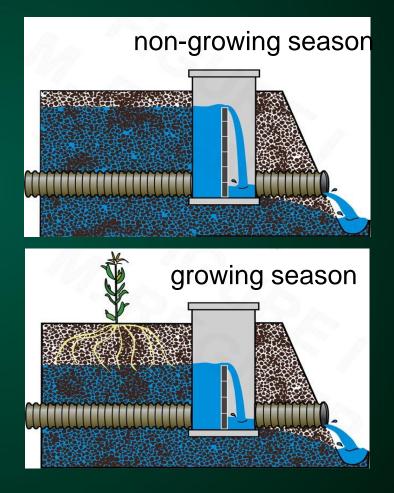
Resistance values for depths 8-46 cm on drained and undrained ground seeded into soybean.

Water Management Potential

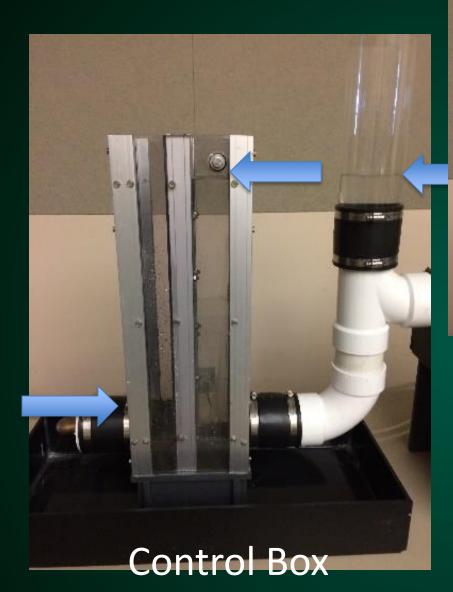
J F M A M J J A S O N D

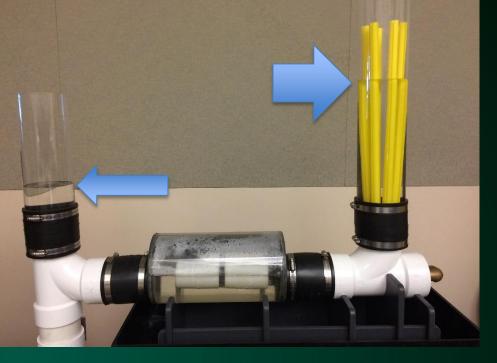
- Old School: Managing excess water meant simply removing it
- New School: What if we had more control over the NDSU NORTH DAKOTA Seasonal water balance?

Source Gary Sands

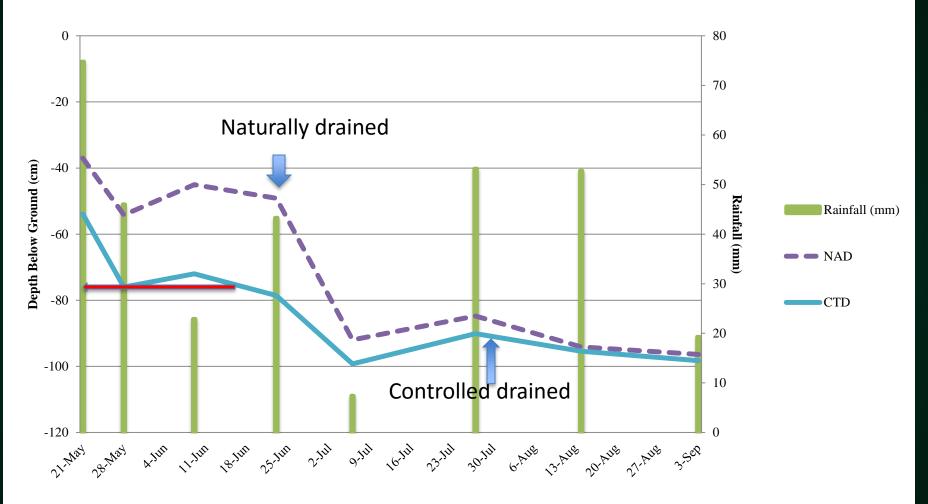

Types of drainage water management

Subsurface drainage

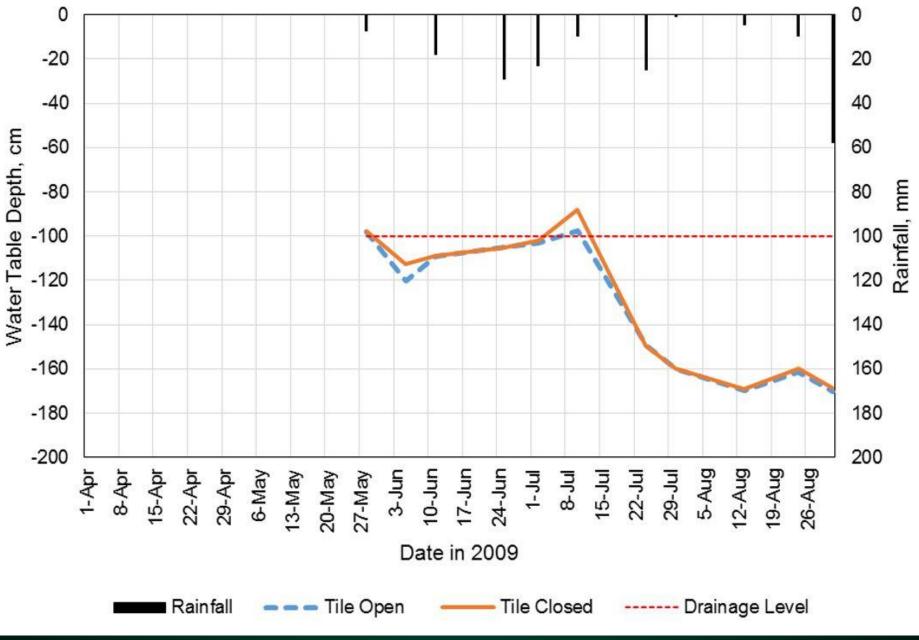

 Conventional
 Controlled
 Subirrigation



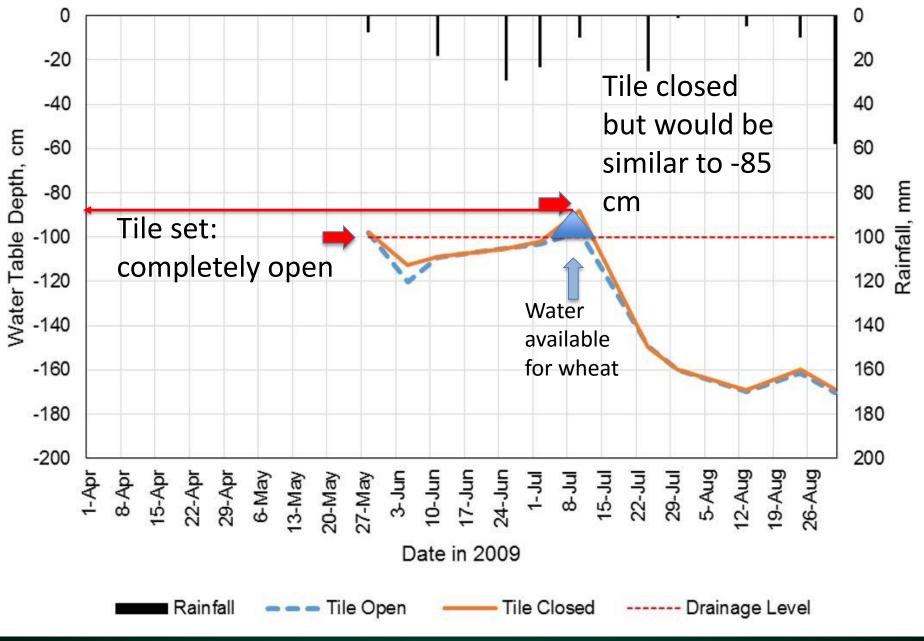
Controlled Drainage

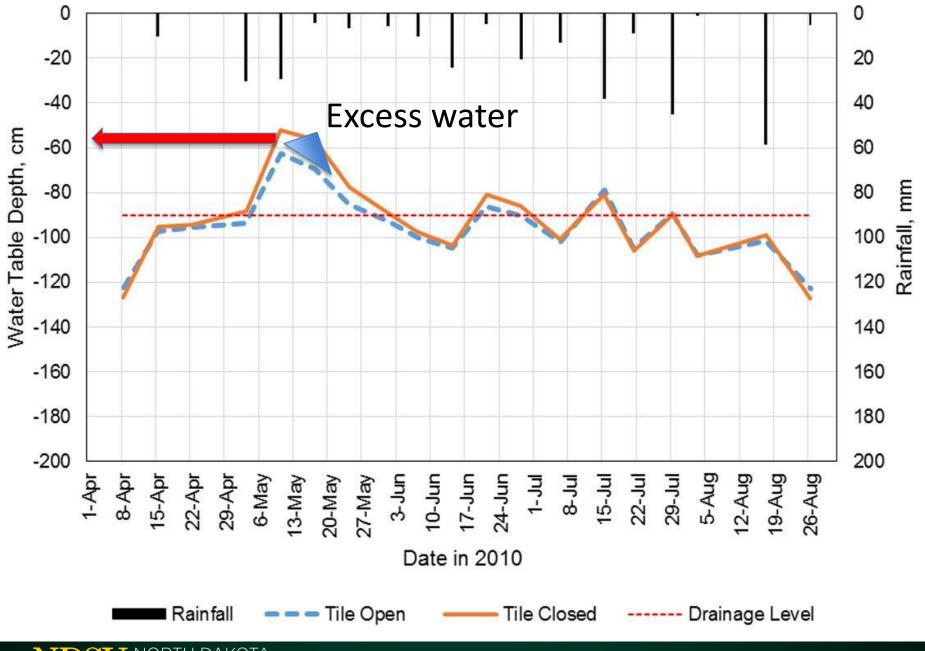


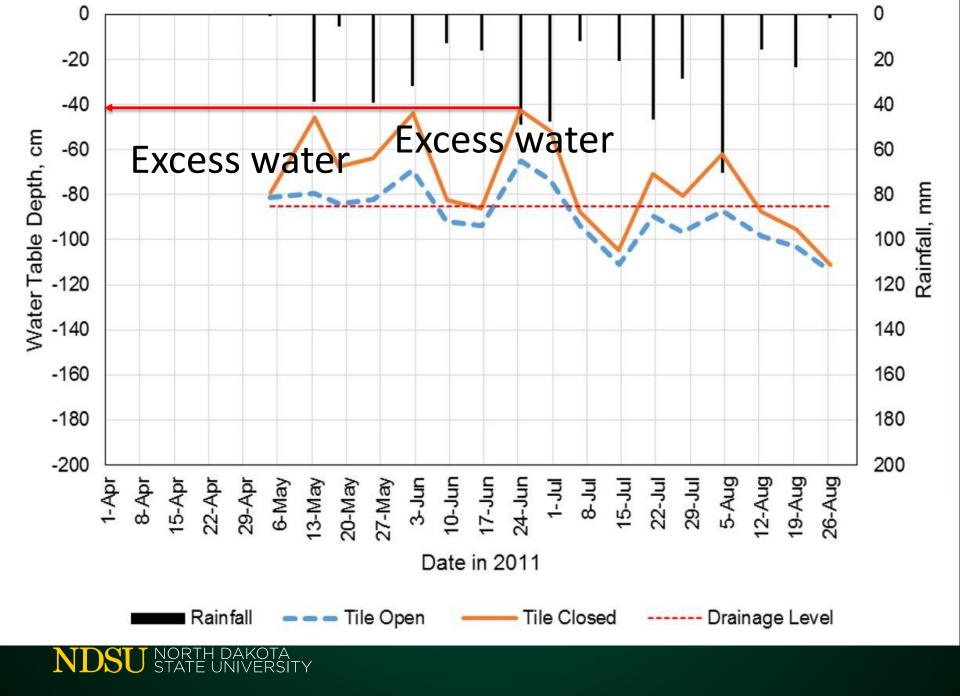
Sub-surface control device


Water table

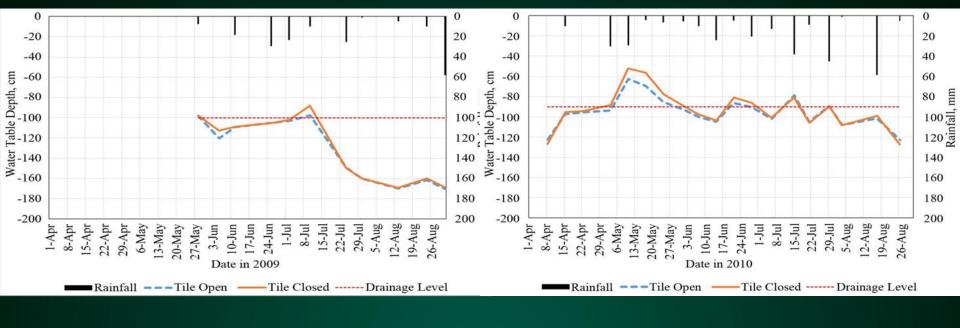
NW22 Water Table Depth 2015

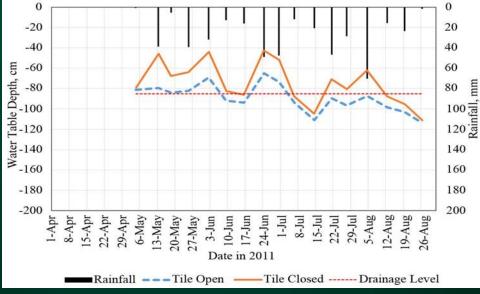



Wheat Study 2009-2011



Manage ment	2009	2010	2011	2009- 2011
		Bush	el acre	-1
Closed tile	69.9a			
Open tile	67.0a			



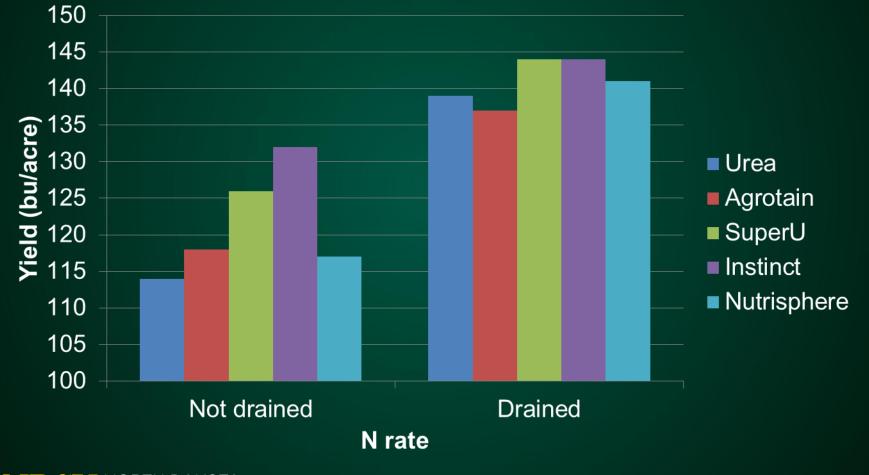


Manage ment	2009	2010	2011	2009- 2011
		Bush	el acre [.]	-1
Closed tile	69.9a	61.8a		
Open tile	67.0a	62.7a		

Manage ment	2009	2010	2011	2009- 2011
		Bush	el acre [.]	-1
Closed tile	69.9a	61.8a	35.4a	55.7a
Open tile	67.0a	62.7a	37.6a	55.8a

Mgt	2009-	Mgt Level	2009-
Level 1	2011	2	2011
	Bu/A		Bu/A
Closed tile	55.7a	Limited Mgt	54.8b
Open tile	55.8a	Best Mgt	56.7a

Level 2 is best management approach, i.e. tile closed in 2009 in response to dry conditions and tile open in 2010 and 2011 in response to wetter conditions. Numbers with the same column with the same letter are not significantly different at $p \le 0.10$.


Mgt	2009-	Mgt Level	2009-
Level 1	2011	2	2011
	Bu/A		Bu/A
Closed	55.7a	Limited	54.8b
tile		Mgt	
Open	55.8a	Best Mgt	56.7a
tile			

Level 2 is best management approach, i.e. tile closed in 2009 in response to dry conditions and tile open in 2010 and 2011 in response to wetter conditions. Numbers with the same column with the same letter are not significantly different at $p \le 0.10$.

Mgt	2009-	Mgt Level	2009-
Level 1	2011	2	2011
	Bu/A		Bu/A
Closed	55.7a	Limited	54.8b
tile		Mgt	
Open	55.8a	Best Mgt	56.7a
tile			

Level 2 is best management approach, i.e. tile closed in 2009 in response to dry conditions and tile open in 2010 and 2011 in response to wetter conditions. Numbers with the same column with the same letter are not significantly different at $p \le 0.10$.

Effect of tile drainage and additive at the 112 N rate on yield of corn, NW22, 2011.

Iron Deficiency Chlorosis (IDC)

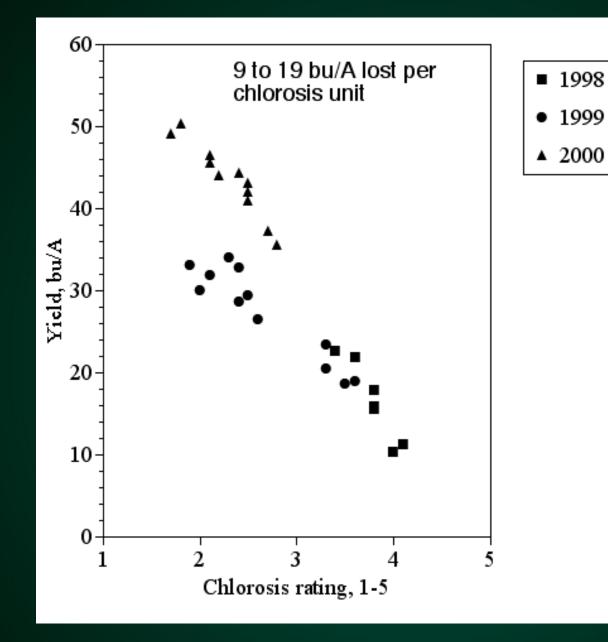
- Fe is a micronutrient
- Fe is essential in the formation of chlorophyll
- IDC often associated with high pH, stressed plant, lack of soil aeration
- Normally not a lack of Fe in the soil
- Caused by the inability of the plant to take up Fe or utilize it

Symptoms occur usually in the newest leaves formed. The leaf looks yellow and the veins in the leaf stay green.

SOYBEAN IRON CHLOROSIS

- 1. High pH (7.8 8.5).
- 2. High amounts of bi carbonates.
- 3. High levels of soluble salts (>0.7 ppm).
 4. Very dry or wet soils (higher moisture more IDC).
- 5. Low Soil Temperature.
- 6. High Soil Nitrate Concentration.

InstantInstantNumerical ScoreDescription				
Numerical S	COIE	Description		
1-5 scale	1-9 scale	Rating		
1 to 2	1 to 2.5	Tolerant		
2.1 to 3	2.6 to 5	Moderately Tolerant		
3.1-4	5.1 to 7.5	Moderately Susceptible		
4.1 to 5	7.5 to 9	Susceptible		



Iron Chlorosis score 4

Iron Chlorosis score 5

Source: Dr. Jay Goos

Source: J. Goos

http://www.ag.ndsu.edu/varietytrials

NDSU NORTH DAKOTA STATE UNIVERSITY

VARIETY TRIAL RESULTS

NDSU > Variety Trial Results > Soybean

Variety Trial Results	Soybean This page provides access to Soybean Variety Trial Results from all	Trial Results Publications
Barley	NDSU Research Extension Centers.	Trial Results - Soybean - North
Borage	Variety Trial Results are best viewed in Adobe Reader. Adobe Reader is free software	Dakota (A843)
Buckwheat	that lets you view and print Adobe Portable Document Format (PDF) files. To access	
Camelina	PDF files you need Adobe Reader installed. If you do not have Adobe Reader on your computer, you can download it below.	Results by Type
Canola		Results by Type
Chickpea		Roundup Ready
Corn	Download Adobe Reader	
Crambe		Results by Source
Dry Bean		Carrington REC
Durum	Here are the latest Soybean Variety Trial	Dickinson REC
NDSU NORTH DA	AKOTA VERSITY	

ABOUT NDSU ACADEMICS ADMISSION ATHLE

Google[™] Custom Search

Access

http://www.ag.ndsu.edu/varietytrials

NDSU NORTH DAKOTA STATE UNIVERSITY

ABOUT NDSU	ACADEMICS	ADMISSION	ATHI F
ABOOT ND30	ACADEMICS	ADIVIDUIU	ATTICL

Google[™] Custom Search

Access

VARIETY TRIAL RESULTS

NDSU > Variety Trial Results > Soybean

Variety Trial Results	Soybean This page provides access to Soybean Variety Trial Results from all	Trial Results Publications
Barley	NDSU Research Extension Centers.	Trial Results - Soybean - North
Borage	Variety Trial Results are best viewed in Adobe Reader. Adobe Reader is free software	Dakota (A843)
Buckwheat	that lets you view and print Adobe Portable Document Format (PDF) files. To access	
Camelina	PDF files you need Adobe Reader installed. If you do not have Adobe Reader on your computer, you can download it below.	Results by Type
Canola		
Chickpea		Roundup Ready
Corn	Download Adobe Reader	
Crambe		Results by Source
Dry Bean		Carrington REC
Durum	Here are the latest Soybean Variety Trial	Dickinson REC
NINCT I NORTH	DAKOTA	

NDOU STATE UNIVERSITY

A843-16

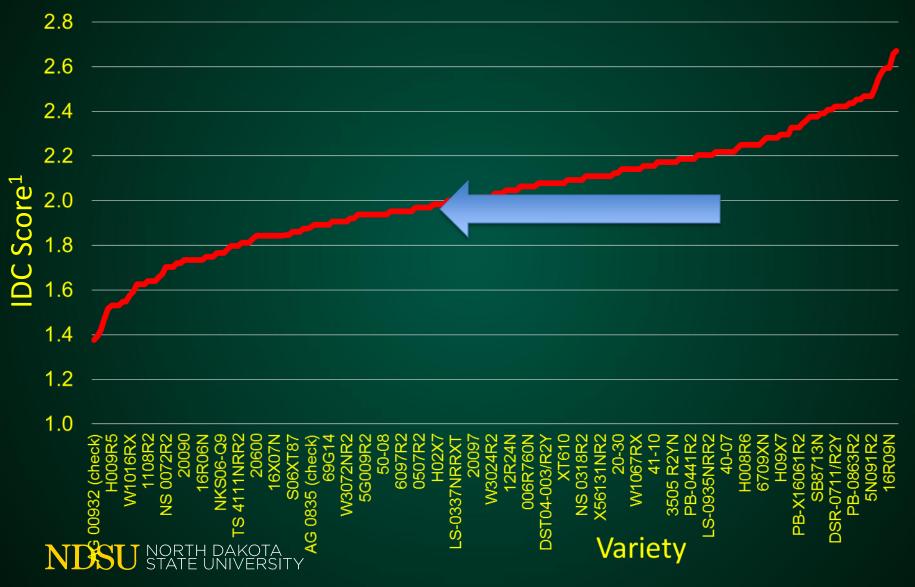
North Dakota Soybean Variety Trial Results for 2016 and Selection Guide

Hans Kandel, Ted Helms and Sam Markell (NDSU Main Station); Mike Ostlie, Blaine Schatz, Greg Endres, Ezra Aberle, Tim Indergaard, Steve Zwinger, Jesper Nielsen and Steve Schaubert (Carrington Research Extension Center); Kelly Cooper, Leonard Besemann, and Heidi Eslinger (Oakes Irrigation Site); John Rickertsen and Rick Olson (Hettinger Research Extension Center); Eric Eriksmoen, James Tarasenko and Joe Effertz (North Central Research Extension Center, Minot); Bryan Hanson, Travis Hakanson and Lawrence Henry (Langdon Research Extension Center); Jerry Bergman, Gautam Pradhan, Emma Link, Austin Link, Tyler Tjelde and Justin Jacobs (Williston Research Extension Center)

We thank all producer cooperators for contributing their time, labor, land and other material to the 2016 soybean yield trial program in the central and southern Red River Valley and other off-station sites.

Table 3. 2016 NDSU Roundup Ready Soybean Iron-deficiency Chlorosis Trial - Author, T. Helms (Page 1 of 2).									
		4-site			4-site			4-site	
		Mean			Mean			Mean	
Company	Variety	IDC^1	Company	Variety	IDC ¹	Company	Variety	IDC^1	
Asgrow	AG 00932 (check)	1.4	Peterson	17X04N	1.8	Proseed	50-60N	2.0	
Pioneer	P01T06R	1.4	Integra	20468	1.8	Proseed	XT603	2.0	
Pioneer	P005T13R	1.4	Integra	20600	1.8	Wensman	W30085NR2	2.0	
Pioneer	P008T22R2	1.5	Legend	11R760N	1.8	Asgrow	AG 0732 (check)	2.0	
Channel	0205R2	1.5	Syngenta	NKS08-M2	1.8	Channel	0507R2	2.0	
Hefty	H009R5	1.5	Prairie	PB-1257R2	1.8	Dairyland	DSR-0305/R2Y	2.0	
Legacy	LS-0334RR2	1.5	Peterson	16R01	1.8	Dyna-Gro	S04XT77	2.0	
REA	R0815	1.5	Peterson	16X07N	1.8	Hefty	H03X7	2.0	
Hefty	H008R3	1.5	REA	R00727	1.8	Dyna-Gro	SX16006R	2.0	
REA	R0216	1.5	Wensman	W1037RX	1.8	Hefty	H02X7	2.0	
Wensman	W1016RX	1.6	Wensman	W30048R2	1.8	Prairie	PB-0987R2	2.0	
REA	64G94	1.6	Wensman	W3031NR2	1.8	Thunder	SB8707N	2.0	

Table 3. 2016 NDSU Roundup Ready Soybean Iron-deficiency Chlorosis Trial - Author, T. Helms (Page 1 of 2).									
		4-site			4-site			4-site	
		Mean			Mean			Mean	
Company	Variety	IDC ¹	Company	Variety	IDC^1	Company	Variety	IDC^1	
Asgrow	AG 00932 (check)	1.4	Peterson	17X04N	1.8	Proseed	50-60N	2.0	
Pioneer	P01T06R	1.4	Integra	20468	1.8	Proseed	XT603	2.0	
Pioneer	P005T13R	1.4	Integra	20600	1.8	Wensman	W30085NR2	2.0	
Pioneer	P008T22R2	1.5	Legend	11R760N	1.8	Asgrow	AG 0732 (check)	2.0	
Channel	0205R2	1.5	Syngenta	NKS08-M2	1.8	Channel	0507R2	2.0	
Hefty	H009R5	1.5	Prairie	PB-1257R2	1.8	Dairyland	DSR-0305/R2Y	2.0	
Legacy	LS-0334RR2	1.5	Peterson	16R01	1.8	Dyna-Gro	S04XT77	2.0	
Hefty	H006R7	1.8	Legacy	LS-0837N	2.0	Syngenta	NKS02-R2	2.1	
Hefty	H03R5	1.8	NuTech	6097R2	2.0	Proseed	XT610	2.1	
Mean		2.0	Mean		2.0	Mean		2.0	
LSD 0.05		0.30	LSD 0.05		0.30	LSD 0.05		0.30	
LSD 0.10		0.21	LSD 0.10		0.21	LSD 0.10		0.21	

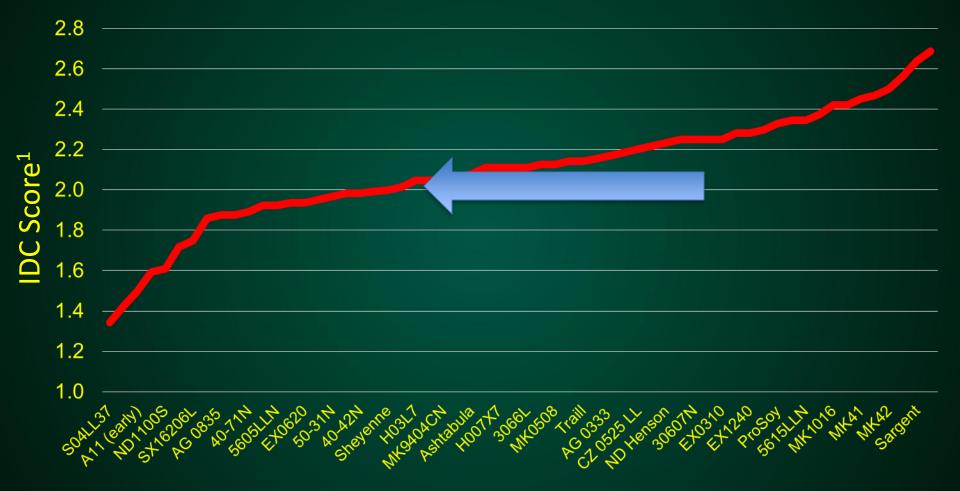

Table 3. 2016 NDSU Roundup Ready Soybean Iron-deficiency Chlorosis Trial - Author, T. Helms (Page 1 of 2).									
		4-site			4-site			4-site	
		Mean			Mean			Mean	
Company	Variety	IDC ¹	Company	Variety	IDC^1	Company	Variety	IDC^1	
Asgrow	AG 00932 (check)	1.4	Peterson	17X04N	1.8	Proseed	50-60N	2.0	
Pioneer	P01T06R	1.4	Integra	20468	1.8	Proseed	XT603	2.0	
Pioneer	P005T13R	1.4	Integra	20600	1.8	Wensman	W30085NR2	2.0	
Pioneer	P008T22R2	1.5	Legend	11R760N	1.8	Asgrow	AG 0732 (check)	2.0	
Channel	0205R2	1.5	Syngenta	NKS08-M2	1.8	Channel	0507R2	2.0	
Hefty	H009R5	1.5	Prairie	PB-1257R2	1.8	Dairyland	DSR-0305/R2Y	2.0	
Legacy	LS-0334RR2	1.5	Peterson	16R01	1.8	Dyna-Gro	S04XT77	2.0	

Hefty	H006R7	1.8	Legacy	LS-0837N	2.0	Syngenta	NKS02-R2	2.1
Hefty	H03R5		NuTech	6097R2	2.0	Proseed	XT610	2.1
Mean		2.0	Mean		2.0	Mean		2.0
LSD 0.05		0.30	LSD 0.05		0.30	LSD 0.05		0.30
LSD 0.10		0.21	LSD 0.10		0.21	LSD 0.10		0.21

Table 3. 201	Fable 3. 2016 NDSU Roundup Ready Soybean Iron-deficiency Chlorosis Trial - Author, T. Helms (Page 1 of 2).								
		4-site			4-site			4-site	
		Mean			Mean			Mean	
Company	Variety	IDC ¹	Company	Variety	IDC^1	Company	Variety	IDC^1	
Asgrow	AG 00932 (check	1.4	Peterson	17X04N	1.8	Proseed	50-60N	2.0	
Pioneer	P01T06R	1.4	Integra	20468	1.8	Proseed	XT603	2.0	
Table 3. 20	16 NDSU Roundup	Ready So	ybean Iron-de	eficiency Chlorosis	Trial - A	uthor, T. Heln	ns (Page 2 of 2).		
		4-site			4-site			4-site	
		Mean			Mean			Mean	
Company	Variety	IDC^1	Company	Variety	IDC^1	Company	Variety	IDC^1	
Thunder	3606 R2YN	2.1	Mycogen	5N078R2	2.2	Hefty	H08X7	2.5	
Thunder	3614 R2YN	2.1	Channel	0807R2	2.2	Integra	20215	2.5	
Asgrow	AG 0333 (check)	2.1	Dairyland	DSR-0404/R2Y	2.2	Mycogen	5N091R2	2.5	
Dairyland	DSR-0807/R2Y	2.1	Legend	04R560	2.2	Legend	09R606N	2.5	
Dyna-Gro	S009RY56	2.1	Proseed	40-07	2.2	Syngenta	NKS006-W5	2.5	
Legend	10R551N	2.1	Thunder	3408 R2YN	2.2	Peterson	16R10	2.6	
Northstar	NS 0318R2	2.1	Wensman	W3018R2	2.2	Hefty	H009R3	2.6	
Channel	00806R2	2.1	Thunder	SB8704	2.2	Peterson	16R09N	2.6	
Dyna-Gro	S09RY64	2.1	Dairyland	DSR-0225/R2Y	2.3	Dairyland	DSR-1120/R2Y	2.7	
Hefty	H01R4	2.1	Hefty	H008R6	2.3	Stine ²	0480 (check)	27	
Mycogen	5B082R2	2.1	Hefty	H02R3	2.3	Stine ²	0480 (check2)	2.7	

NDSU STATE UNIVERSITY

223 RR Varieties IDC Score 2016


¹IDC score was 1-5 scale with 1-green, 5-dead.

able 4. 2016 ND	SU Conventional an	id Liberty Link Soy	ybean Iron-deficiency C	hlorosis Trial - A	uthor, T. Helms.
		4-site			4-site
		Mean			Mean
Company	Variety	IDC^{1}	Company	Variety	IDC^{1}
Dyna-Gro	S04LL37	1.3	NuTech	3066L	2.1
Asgrow check ²	AG 00932	1.4	Richland	MK0249	2.1
Check variety	A11 (early)	1.5	Richland	MK0508	2.1
Dyna-Gro	S06LL26	1.6	NuTech	3115L	2.1
NDSU	ND1100S	1.6	NDSU	Traill	2.1
Peterson	L07-16N	1.7	Proseed	40 - 51N	2.2
Dyna-Gro	SX16206L	1.8	Asgrow check ²	AG 0333	2.2
Terning	TS2010	1.9	Peterson	L02-16N	2.2

Table 4. 2016 ND	SU Conventional and		ybean Iron-deficiency Cl	hlorosis Trial - Aut	
		4-site			4-site
		Mean			Mean
Company	Variety	IDC	Company	Variety	IDC^{1}
Dyna-Gro	S04LL37	1.3	NuTech	3066L	2.1
Asgrow check ²	AG 00932	1.4	Richland	MK0249	2.1
Check variety	A11 (early)	1.5	Richland	MK0508	2.1
Dyna-Gro	S06LL26	1.6	NuTech	3115L	2.1
NDSU	ND1100S	1.6	NDSU	Traill	2.1
Peterson	L07-16N	1.7	Proseed	40 - 51N	2.2
Dyna-Gro	SX16206L	1.8	Asgrow check ²	AG 0333	2.2
Terning	TS2010	1.9	Peterson	L02-16N	2.2
NDSU	Ashtabula	2.1	Richland	MK42	25
Bayer	CZ 0121 LL	2.1	NDSU	ND1406HP	2.6
Hefty	H007X7	2.1	Check variety ³	Sargent	2.6
NuTech	2086L	2.1	Check variety ³	Sargent (2)	2.7
Mean		2.1	Mean		2.1
LSD 0.05		0.22	LSD 0.05		0.22
LSD 0.10		0.20	LSD 0.10		0.20

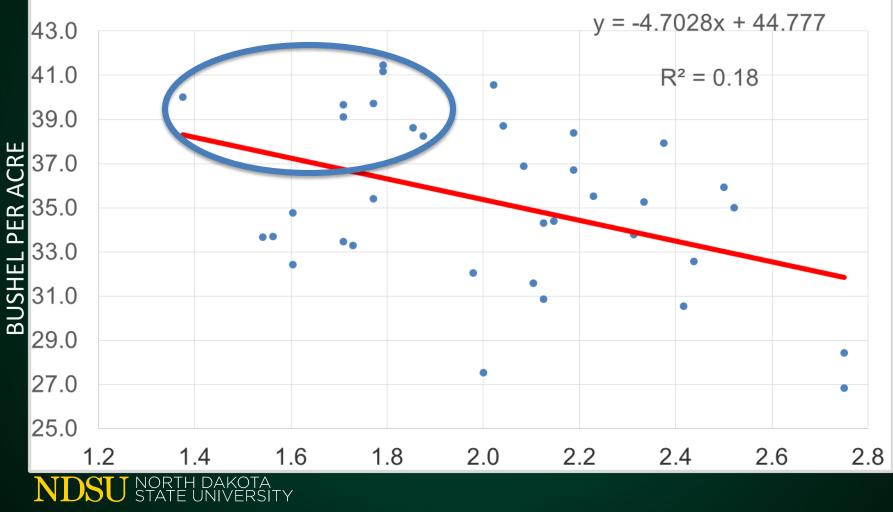
60 non RR Varieties IDC Score 2016

Variety

NDSU NORTH DAK STATE UNIV

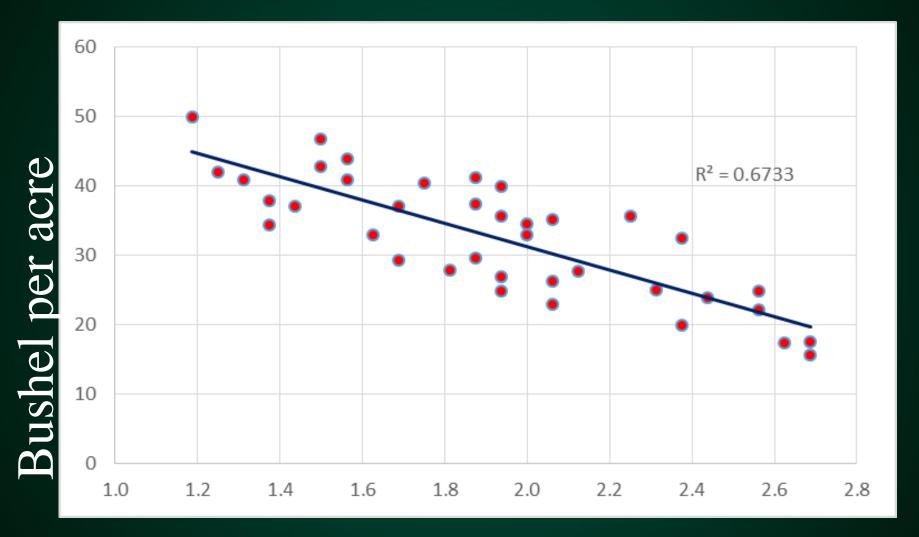
¹IDC score was 1-5 scale with 1-green, 5-dead.

2016 NDSL	J Conv. ID	C Trial
Company	Cultivar	IDC visual*
		score
Dyna-Gro	S04LL37	1.3
Peterson	L07-16N	1.7
NDSU	Sheyenne	2.0
NDSU	ND Bison	2.0
NDSU	Ashtabula	2.1
Thunder	5615LLN	2.3
Susceptible check	Sargent	2.7
LSD (0.05)		0.22



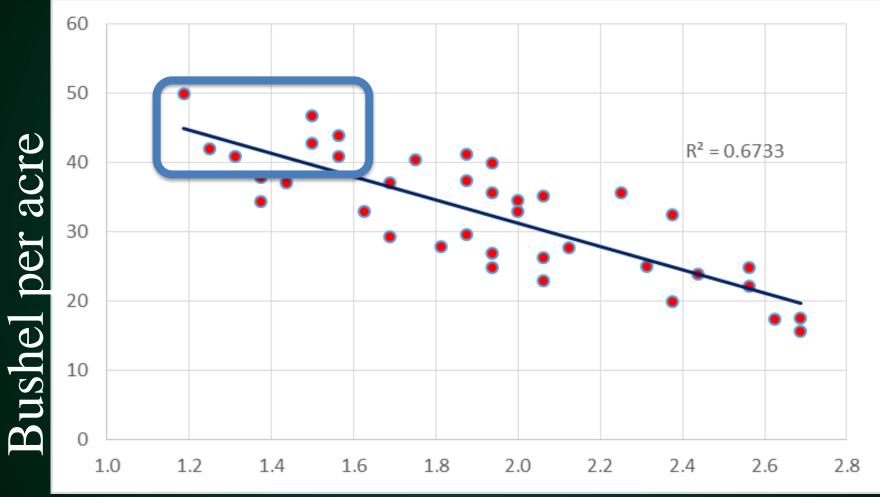
¹IDC score was 1-5 scale with 1-green, 5-dead.

2016 IDC Yield


		<u> </u>							
Table 5. 2016 NDSU Roundup Ready Soybean Iron-deficiency Chlorosis Yield Trial - Auth									
			IDC		2016 Se	ed Yield			
Company/I	Variety	Maturity ¹	Score ²	Leonard	Colfax	Erie	3-site Avg.		
		(date)	(1-5)		(bı	1/a)			
REA	R0815	9/21	1.7	61.0	85.3	67.8	71.4		
Integra	20915N	9/23	1.9	52.4	90.4	69.1	70.6		
Syng NK	NK\$12-R3	9/24	1.5	55.0	90.3	64.8	70.0		
Syng NK	NKS08-M2	9/19	1.7	65.5	84.5	59.3	69.7		
Peterson	15R07N	9/19	1.7	56.0	85.1	63.5	68.2		
Legend	11R760N	9/24	2.2	53.7	86.6	61.3	67.2		
Integra	20775N	9/21	1.9	55.0	88.4	55.9	66.4		
Legacy	0334	9/17	1.7	56.1	86.8	56.1	66.3		

NDSU Previous year RR Soybean yield and IDC

IDC SCORE 1-5


IDC and Yield NDSU Trial 2015

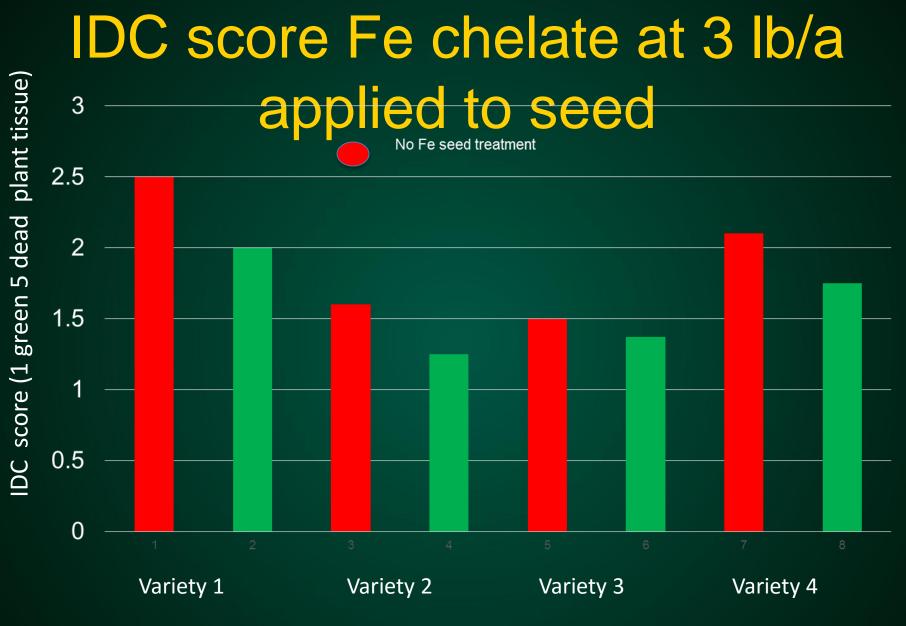
NDSU NORTH DAKOTA STATE UNIVERSITY

IDC: 1 green, 5 dead tissue

IDC and Yield NDSU Trial 2015

NDSU NORTH DAKOTA STATE UNIVERSITY

IDC: 1 green, 5 dead tissue


IDC rating and Yield Leonard 2016

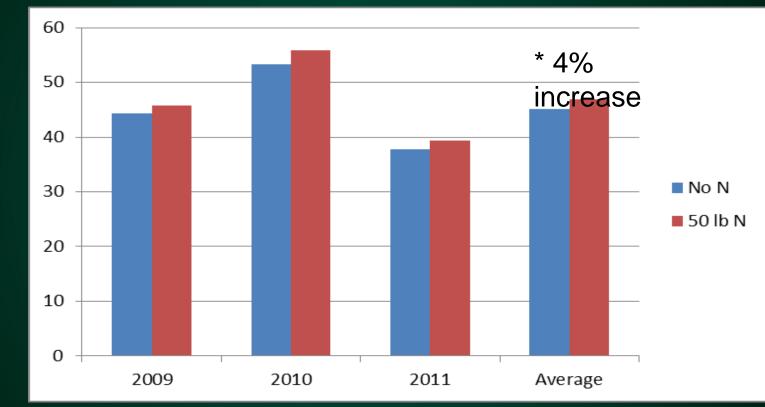
IDC 1 Green 5 dead tissue

Guidelines for Iron Chlorosis

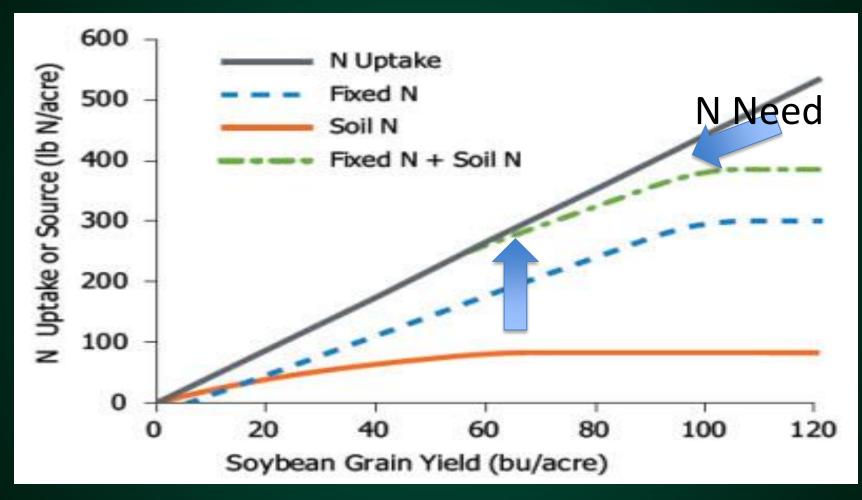
- Select Varieties with high tolerance when:
 - pH above 8
 - Salts above 1 mmhos
 - Carbonates above 6-8%
 - Still a lot to learn about carbonates
 - Need to handle saturated soils
 - Disease resistance package

Data: Holmes , Arthur ND

Soybean and Nitrogen


- Nitrate may aggravate iron chlorosis
- Soybeans can fix their own Nitrogen
- If carryover of NO 3 -N from previous crops is high, the soybean uses the NO 3 -N from the soil. The partnership with the *Rhizobia* bacteria becomes less efficient.

Soybean Response to Nitrogen Inputs under Tile Drained Conditions


Soybean Yield With and Without N, 2009-2011

NDSU NORTH DAKOTA STATE UNIVERSITY

Bu per acre

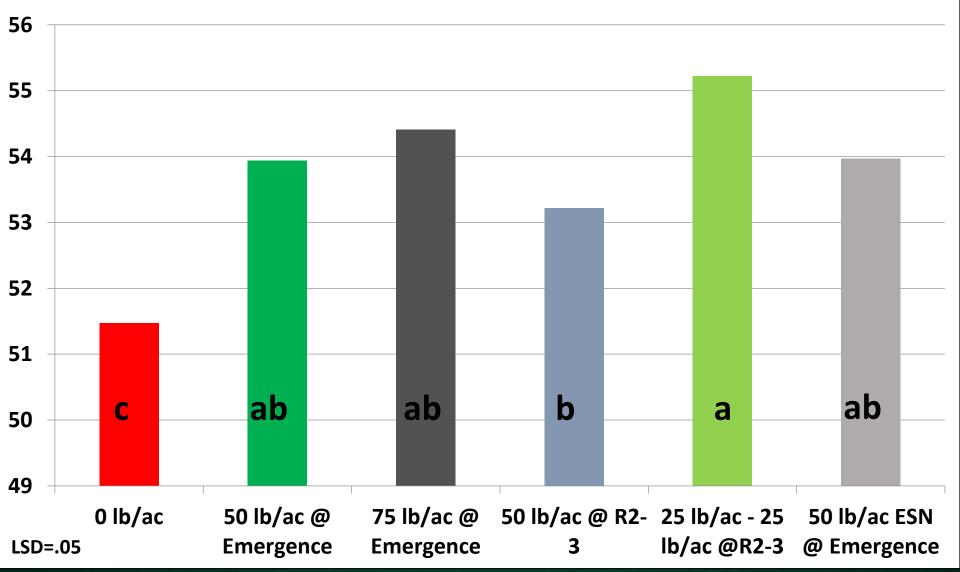
Sources of N for a Soybean Crop

Figure 1. A generalized N budget for soybean. Adapted from Salvagiotti et al., 2008.

Measurements taken

- Stand count
- Early and late vigor score
- IDC score
- Visual greenness score
- Plant height
- Yield

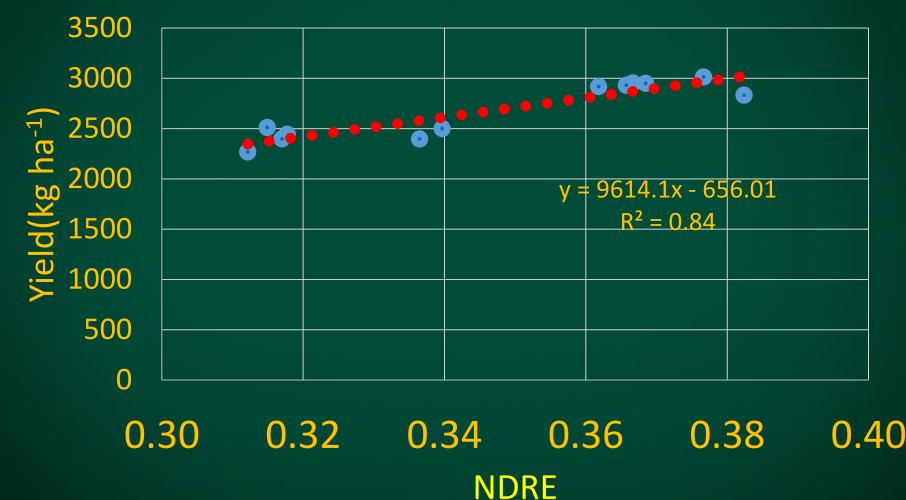
Soybean IDC 2013-2014 across varieties

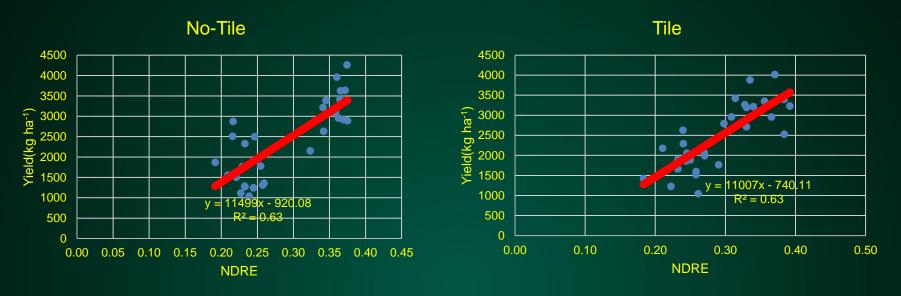

N applied	IDC
Lbs/acre	(1-5) [1= green 5 = dead tissue]
0 (control)	2.1d
25-25(as urea) split	2.6b
50 (as urea)	2.8a
50 (as ESN)	2.3c
50 (as urea) at R2	2.1d
75 (as urea)	2.9a

Soybean IDC 2013-2014 across		
N applied	IDC	
Lbs/acre	(1-5) [1= green 5 = dead tissue]	
0 (control)	2.1d	
25-25(as urea) split	2.6b	
50 (as urea)	2.8a	
50 (as ESN)	2.3c	
50 (as urea) at R2	2.1d	
75 (as urea)	2.9a	

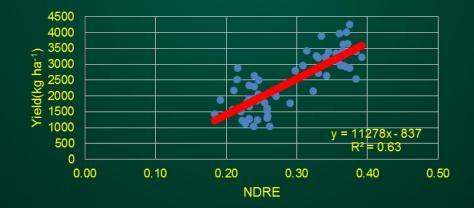
Soybean IDC 2013-2014 across		
N applied	IDC	
Lbs/acre	(1-5) [1= green 5 = dead tissue]	
0 (control)	2.1d	
25-25(as urea) split	2.6b	
50 (as urea)	2.8a	
50 (as ESN)	2.3c	
50 (as urea) at R2	2.1d	
75 (as urea)	2.9a	

2014 NW22 soybean

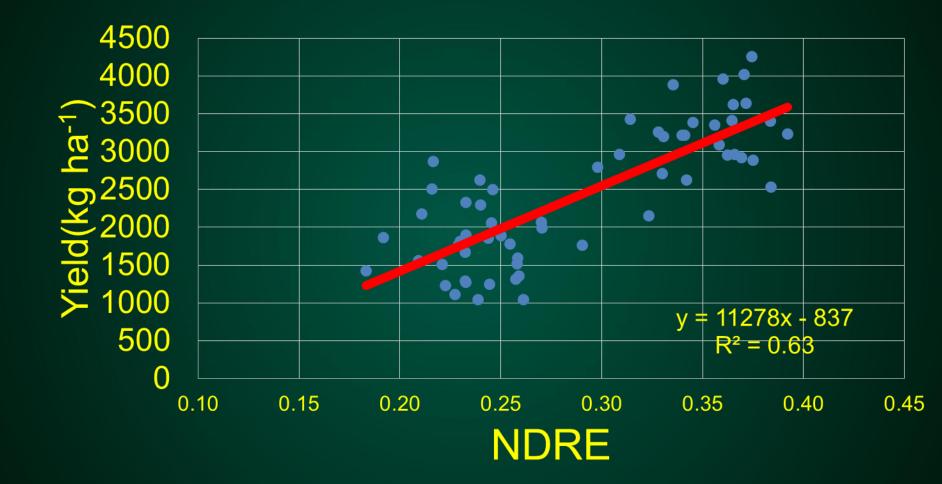

N treatment yield (bu/ac)


OptRx active optical sensor

- This sensor operates similar to the greenseeker sensor but has three channels.
- The sensor emits light at three wavelengths:
 670 and 730 nm in the visible band, and 780 nm in the near infra-red (NIR) band.
- Sensor has the ability to provide NDRE (Normalized Difference Vegetation Index Red Edge) values calculated as (NIR – Red edge)/ (NIR + Red edge).

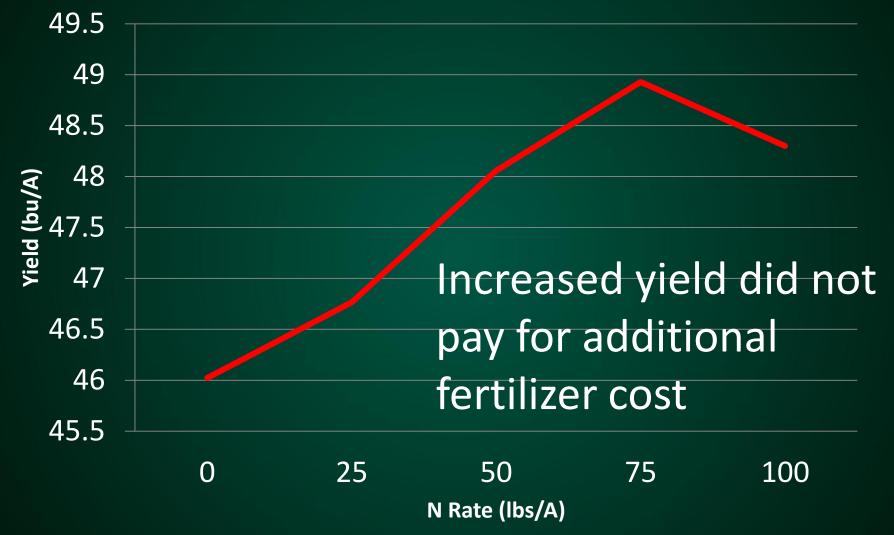

Soybean greenness and yield across N treatments and varieties

Variety-4



no-tile and tile

Variety-4 all data points


Soybean Yield 2013-2014 across		
N applied	Yield	
Lbs/acre	Bu/acre	
0 (control)	42.8b	
25-25(as urea) split	45.3a	
50 (as urea)	45.0a	
50 (as ESN)	44.3a	
50 (as urea) at R2	44.2a	
75 (as urea)	45.2a	

Means in column with different letter are significantly different at $P \le 0.10$.

Soybean Yield 2013-2014 across		
N applied	Yield	
Lbs/acre	Bu/acre	
0 (control)	42.8b	
25-25(as urea) split	45.3a	
50 (as urea)	45.0a	
50 (as ESN)	44.3a	
50 (as urea) at R2	44.2a	
75 (as urea)	45.2a	

Means in column with different letter are significantly different at $P \le 0.10$.

Soybean Yield over 5 N Rates, 2015

N application and Nodulation, 2015

N (as Urea) In Ib/acre	Nodules	Percent large nodules
0	41	45

N application and Nodulation, 2015		
N (as Urea) In Ib/acre	Nodules per root	Percent large nodules
0	41	45
25	30	15

N application and Nodulation, 2015		
N (as Urea) In Ib/acre	Nodules per root	Percent large nodules
0	41	45
25	30	15
50	26	8

N application and Nodulation, 2015		
N (as Urea) In Ib/acre	Nodules per root	Percent large nodules
0	41a	45a
25	30b	15b
50	26b	8b

N application and Nodulation, 2015

N (as Urea) In Ib/acre	Nodules per root	Percent large nodules
0	41	45
25	30	15
50	26	8

N application and Nodulation, 2015

N (as Urea) In Ib/acre	Nodules per root	Percent large nodules
0	41a	45a
25	30b	15b
50	26b	8b

Conclusions N application

Fertilizer N application increased IDC.
N application decreased nodulation

Conclusions N application

- Yields increased modestly 4% (2009-11) 5% (2013-2014) and 6% {with 75 lb N} in 2015.
- No N treatments provided a positive net return compared with the control.

Soybean Response to Nitrogen and Sulfur Fertilization

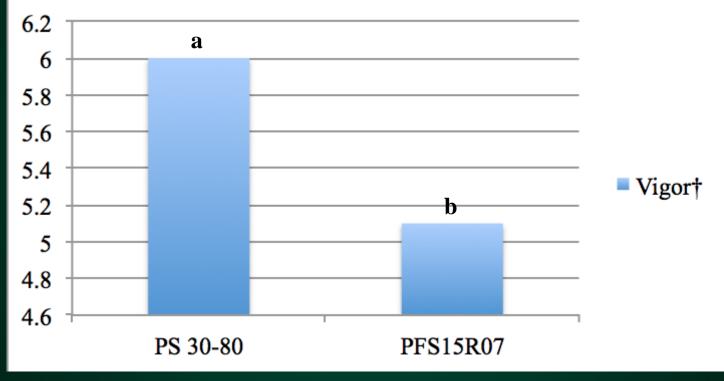
Main N and S treatments

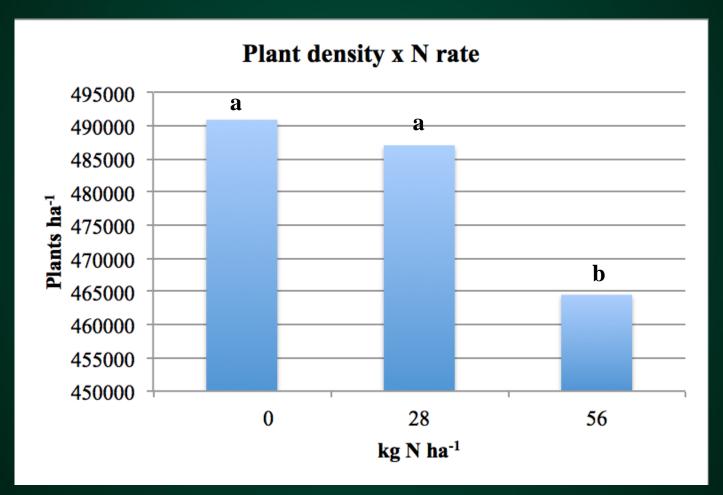
Table 4. Fertilizer treatments used in the factorial study.

Fertilizer	kg N ha ⁻¹	kg S ha ⁻¹
Check	0	0
Urea	28	0
Urea	56	0
Urea+gypsum	28	11.2
Urea+gypsum	28	22.4
Urea+gypsum	56	11.2
Urea+gypsum	56	22.4
Gypsum	0	11.2
Gypsum	0	22.4

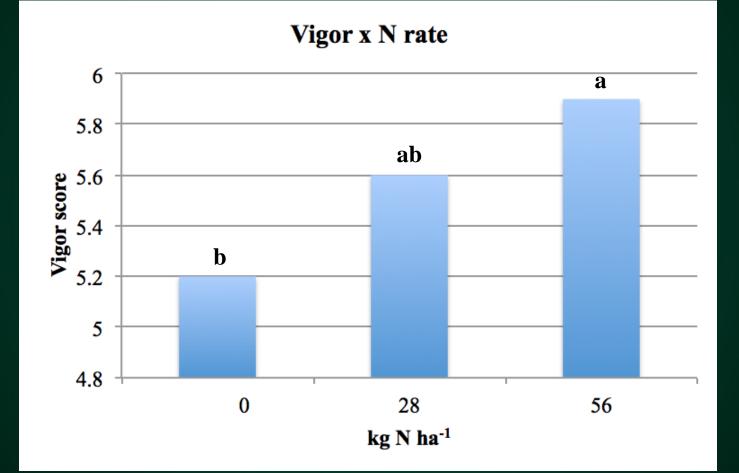
NDSU NOR STATE UNIVERSITY

Visual greenness score


1-5 scale
 -1 = green

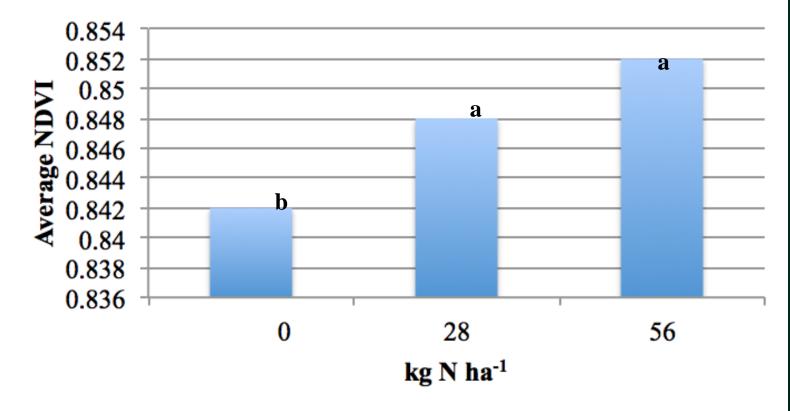

Vigor score between VTs

Average Vigor by VT



[†]Vigor was scored visually on a scale of 1-9 (9 = most vigorous)

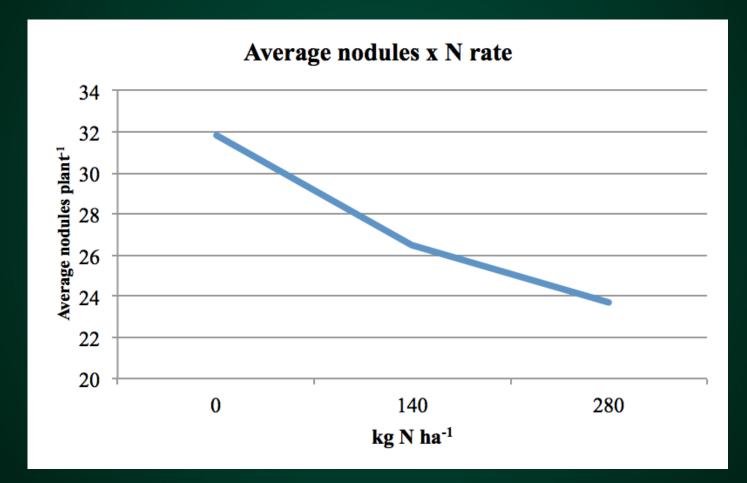
N effect on plant density


N effect on vigor score

NDSU STATE UNIVERSITY

N effect on NDVI score

NDVI score x N rate

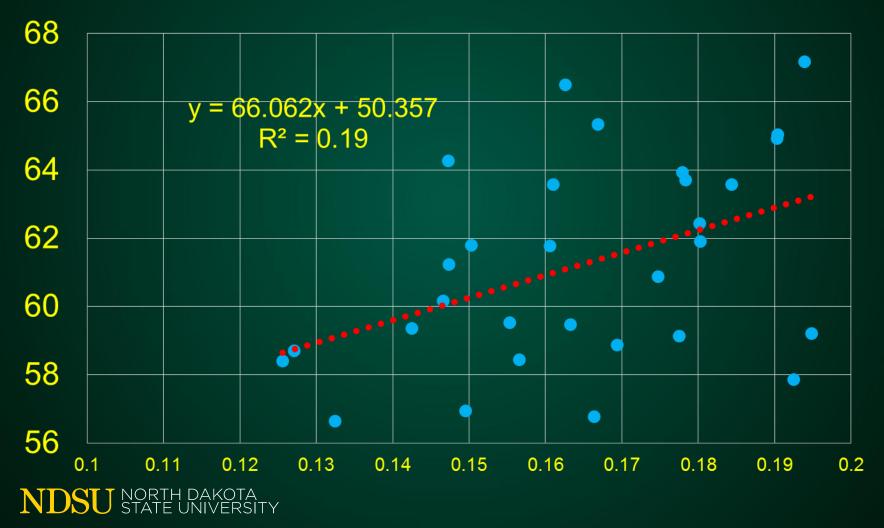

[†]NDVI obtained from the handheld GreenSeeker on NDSU NORTH DAKOTA scale of 0 – 0.99 (0.99 = most vigorous)

280 kg N ha⁻¹

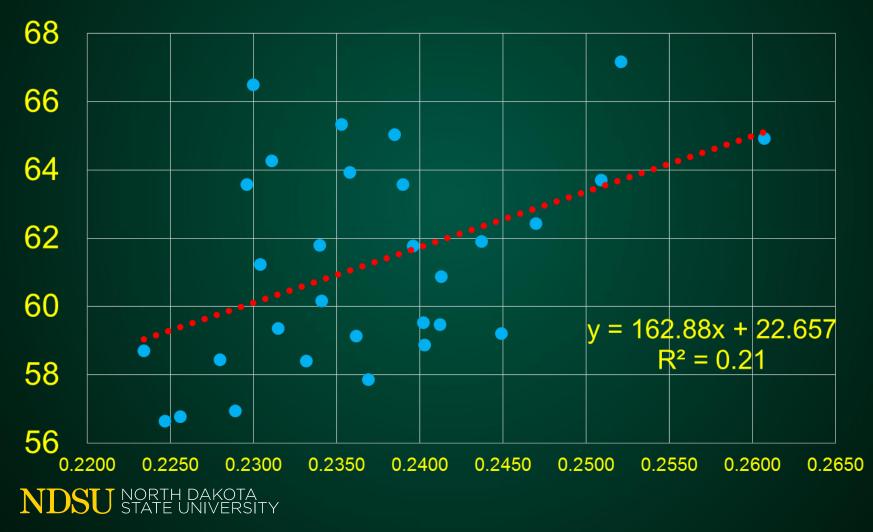
NDSU NORTH

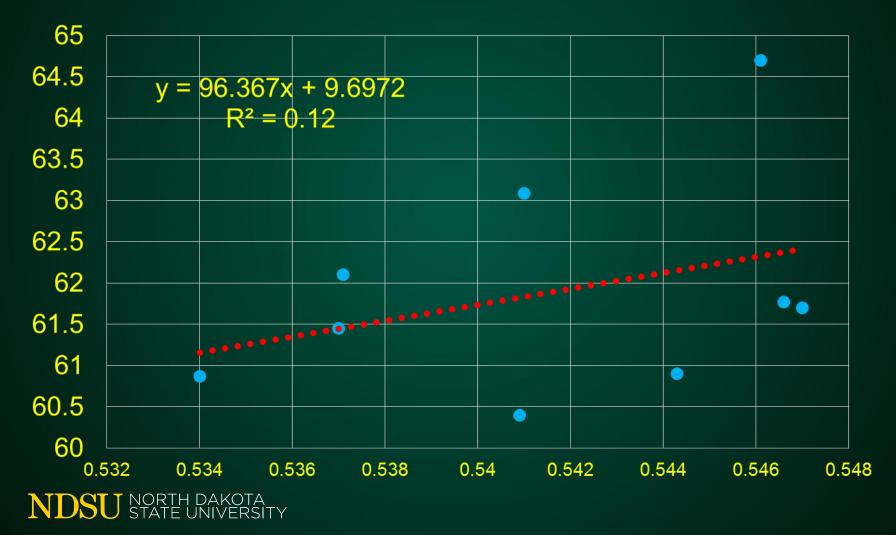
0 kg N ha⁻¹

N effect on V4 average nodules



Summary


- Varieties
 - Differ in vigor
- Nitrogen
 - Decreased density
 - Increased vigor, G, NDVI, height, & yield
- N x S
 - Influenced visual greenness but not yield at (p≤0.05)


NDVI vs Yield Steele County Variety Trial

DGCI vs Yield Steele County Variety trial

NDVI August and yield N x S across varieties

