The Role of Soil Testing in Precision Agriculture

Fabián G. Fernández Department of Soil, Water, and Climate <u>fabiangf@umn.edu</u>

AGVISE Seminars. 10-12 Jan. 2017 Granite Falls, MN – Watertown, SD – Grand Forks, ND

UNIVERSITY OF MINNESOTA Driven to Discoversm

Soil Testing

- Soil testing IS a useful tool
- Soil testing is NOT perfect
 - Don't overvalue its worth
 - Natural processes and management practices can make it difficult to translate test results into fertilizer recommendations/guidelines

UNIVERSITY OF MINNESOTA

Driven to Discover

Field Soil Test Calibration

- Soil test values only indicate the available nutrient in the soil, not the fertilizer required to grow a crop
- Field soil test calibration gives meaning to a soil-test value in terms of nutrient sufficiency and fertilizer need
 - Units of measurement for test results are meaningless without proper field calibration with yield response
- Follow your state recommendations/guidelines

UNIVERSITY OF MINNESOTA

Driven to Discover

Driven to Discover[®]

Dark Colored "Prairie Soils" Corn-Soybean Rotation

Optimum N Grain yield at optimum N

How Much Yield Can We Get Through Mineralization in MN? Percent of Corn Yield at EONR Obtained from the 0-N Check 53% C-C, 71% C-S

 Nitrogen management is risk management

- So many unpredictable variables can make it a "game of chance"
- Need to manage based on probability

MRTN Rate 108 (120) 133

University of Minnesota

Driven to Discover

Adding N in D increase Nmin	Yes
Adding N in UD decrease Nmin	Νο
Soybean less Nmin than corn	Yes
D greater Nmin than UD	No

2015

Adding N in D increase NminYesAdding N in UD decrease NminYesSoybean less Nmin than cornYesD greater Nmin than UDYes for fert. trt only

400 samples 0-12" deep Every 6" distance 1⁄2 acre linear transect

> UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover²⁴

TIN Spatial Variability

180 samples (0-6", 6-12", 12-24")10-core compositeEach dot is a 10x10' area

Ammonium-N - Nitrate-N - TIN

Overall, 20 samples per 2.5 acres are needed to achieve a TIN estimate with 10% error margin at 0.05 significance level

🙀 Nutrient Management

UNIVERSITY OF MINNESOTA

Driven to Discover

Can a shallow sample estimate a deeper sample?

0-6" soil samples can be good predictors of 0-12" soils, but the predicting power for 6-12", 12-24", and 0-24" soils is limited

UNIVERSITY OF MINNESOTA

Driven to Discover[®]

End of Season Soil N

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover*

Lamberton, Yield

Ves loam soil

Soil N with Pre-plant Applications

Soil with 4% OM, CEC 24 meq/100g

R1, Lamberton

Ves loam soil

Becker, Yield

Hubbard loamy sand

Soil N with Pre-plant Applications

Soil with 1.6% OM, CEC 8 meq/100g

Hubbard loamy sand

Driven to Discover

Nitrate

TIN

ΙΔ

V4 NO3-N 0-1', Fine-Textured Soils, 5 site-yrs

V4 NO3-N 0-2', Fine-Textured Soils, 5 site-yrs

V4 TIN 0-2', Fine-Textured Soils, 5 site-yrs

Nitrate

TIN

18

V4 soil N (lb ac⁻¹) corn yield prediction

Soil	Grouping	NO ₃				TIN			
		0-1'		0-2'		0-1'		0-2'	
		R ²	Plateau	R ²	Plateau	R ²	Plateau	R ²	Plateau
Coarse- Textured	3 Site-yrs	0.31	113	0.38	269	0.40	226	0.36	
Fine	5 Site-yrs	0.69	124	0.69	191	0.63	154	0.66	
Fine- Textured	3 Site-yrs	0.27	109	0.33	121	0.20	145	0.26	168
	1 Site-yrs	0.06	74	0.15	120	0.12	85	0.13	142

V8 soil N (lb ac⁻¹) corn yield prediction

Nutrient Management

Soil	Grouping	NO ₃				TIN			
		0-1'		0-2'		0-1'		0-2'	
		R ²	Plateau	R ²	Plateau	R ²	Plateau	R ²	Plateau
Coarse- Textured	3 Site-yrs	0.32	58	0.42		0.30	119	0.40	
Fine- Textured	5 Site-yrs	0.25	54	0.40	100	0.16	103	0.27	173
	3 Site-yrs	0.20	62	0.25	84	0.14	92	0.19	121
	1 Site-yrs	0.12		0.13		0.26		0.38	

UNIVERSITY OF MINNESOTA

Driven to Discover[®]

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover³⁴

Waseca, MN; clay loam soil

Driven to Discover

Becker, MN; sandy soil

• Split N (40 + V9)

Split N (80 + V9)

Single N (Pre-plant)

Lamberton, C-C at 120 lb N/a

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover**

Becker, C-C at 120 lb N/a

Hubbard loamy sand

Can We Use Crop Sensors To Improve N Management?

Application Timing

Spatial Variability // Temporal Variability

Grain Yield Prediction – Sensor only

RS - NDRE V12

Nutrient Managemen

Grain Yield Prediction – Sensor only – V4

GreenSeeker Field of

Adapted from Barmeier and Schmidhalter, (2016)

N Deficiency Determination – Sensor only –QPLoc – V8

N Deficiency Determination – Sensor only – QPLoc – V12

N Deficiency Determination – Sensor only – QPLoc

Relative Sensor Reading (RSR)

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discoverst

N Deficiency Determination – Sensor only – LINLoc

Stage	SPAD	GS-NDVI	RS-NDVI	RS-NDRE	
V4	Linear	Q-P	Linear	Linear	
V8	Q-P	Q-P	Linear	Linear	
V12	Linear	ns	Linear	Linear	
R1	Linear	ns	Linear	Linear	
$R^2 = 0.65$ $R^2 = 0$					

Soil N sampling timing to improve sensor predictions of N deficiency

Soil Nitrogen Sampling Timings

Nutrient Management

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover²⁴

Improving Sensor Measurements

🕂 🕺 Νι

Nutrient Management

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover**

Sampling Depth and Nitrogen Measurement

Predicitve Tool	AIC*	R ²
Sensor only	784	0.34
Sensor + 0-24" TIN	729	0.78
Sensor + 0-12" TIN	735	0.74
Sensor + 0-24" NO_3^-	731	0.79
Sensor + 0-12" NO_3^-	741	0.76

* Lower AIC means better fit

V4 Soil NO₃⁻ @ 0-12" is the best approach to improve predictive power

UNIVERSITY OF MINNESOTA

Driven to Discover

<u>Driven to Discover</u>[®]

Take Home Messages

- Soil N is variable but it is an important tool
- Canopy sensors can help us manage N:
 - The earlier the sensing the greater the flexibility to apply nitrogen, BUT
 - The earlier the sensing the lesser the predictive power
 - The later the sensing the greater the predictive power, BUT
 - The later the sensing the lesser the flexibility to apply nitrogen and greater potential for yield loss
- Canopy sensor adjustments with soil N show promise
- In-season N application is <u>A</u> tool

NINTH ANNUAL NUTRIENT MANAGEMENT CONFERENCE

FEBRUARY 7, 2017

SMASS ADC

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

http://mawrc.org/events

ST. CLOUD, MN Management

THIRD Annual NITROGEN: MINNESOTA'S GRAND CHALLENGE & COMPELLING OPPORTUNITY CONFERENCE

February 16, 2017 Verizon Wireless Center, Mankato, MN

Questions?

fabiangf@umn.edu 612-625-7460

