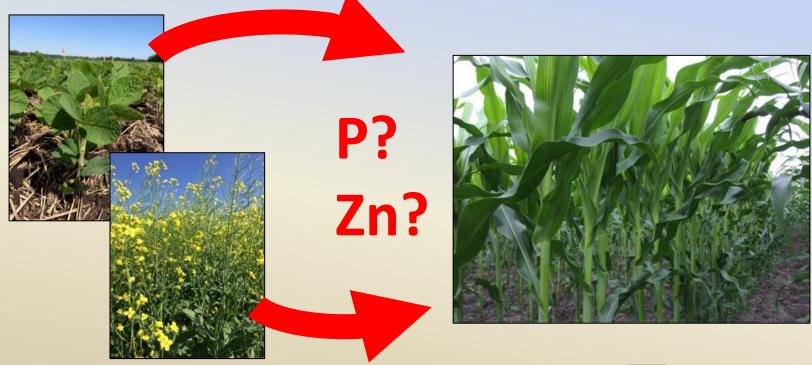
Phosphorus Fertilization of Corn and Soybeans in Manitoba

AGVISE Soil Fertility Seminar – March 16, 2016


Phosphorus and Zinc Fertilization Beneficial Management Practices for Corn in Manitoba <u>Preliminary Results</u>

Magda Rogalsky*, Don Flaten, Yvonne Lawley, Mario Tenuta, John Heard

UofM & MCGA's Corn Agronomy Project Crop Rotation Study

Fertilization strategies for corn grown after canola vs. soybeans

Rotation Study: Background

- Corn is highly dependent on mycorrhizal fungi (AMF)
- Canola is <u>non-mycorrhizal</u>, so AMF population drops
- Therefore, corn on canola stubble is prone to P perhaps Zn deficiency (Ontario & BC studies)
- Starter fertilizer P and Zn may help to offset this problem

P deficiency symptoms at V3

No P Check

Corn on Canola MAP 54 lb P_2O_5 ac⁻¹

U niversity of Manitoba

Rotation Study: Site Information

Location	Carman, MB	Stephenfield, MB
Planting Date	May 25/2015	May 26/2015
Soil Temperature at Planting	19°C at 2" (5cm)	15°C at 2" (5cm)
Harvest Date	October 15/2015	October 14/2015
Olsen-P (ppm)	19	6
DTPA-Zn (ppm)	1.50	0.82

Corn Hybrid: DKC 26-28RIB (2150 CHU)

2 Previous Crop Treatments

U N I V E R S I T Y of Manitoba

Rotation Study: 5 Fertilizer Treatments

(lbs/ac, sidebanded 2" by 1" at planting)

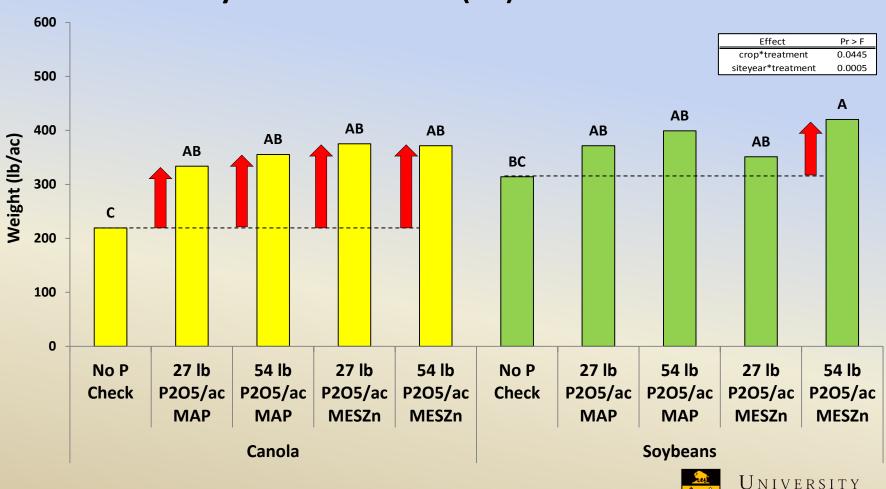
CONTROL

1. No P Check


MAP (11-52-0) + AS (21-0-0-24)

2.	27 P_2O_5	0 Zn	6.8 S
3.	54 P ₂ O ₅	0 Zn	13.5 S

MicroEssentials SZ (12-40-0-10S-1Zn)


4.	27 P_2O_5	0.68 Zn	6.8 S
5.	54 P_2O_5	1.35 Zn	13.5 S

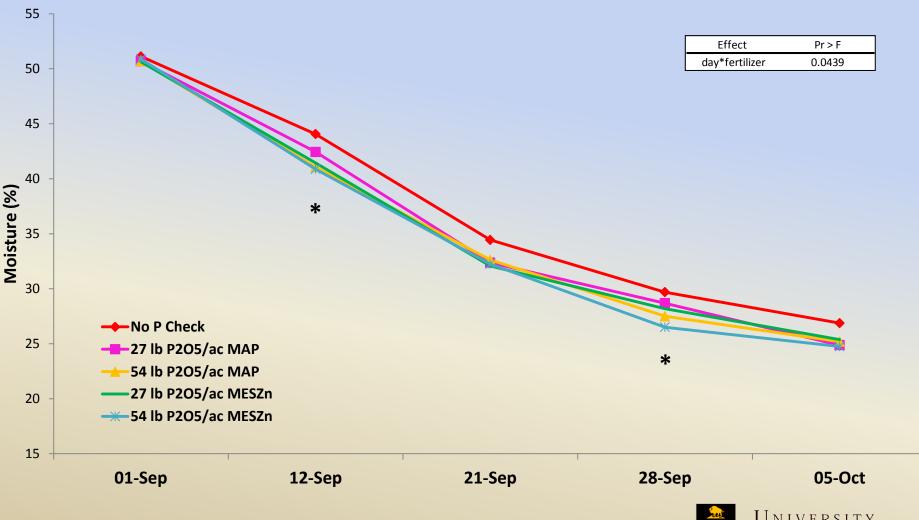
Collected at V4, 10 plants from each plot (P, Zn analysis)

OF MANITOBA

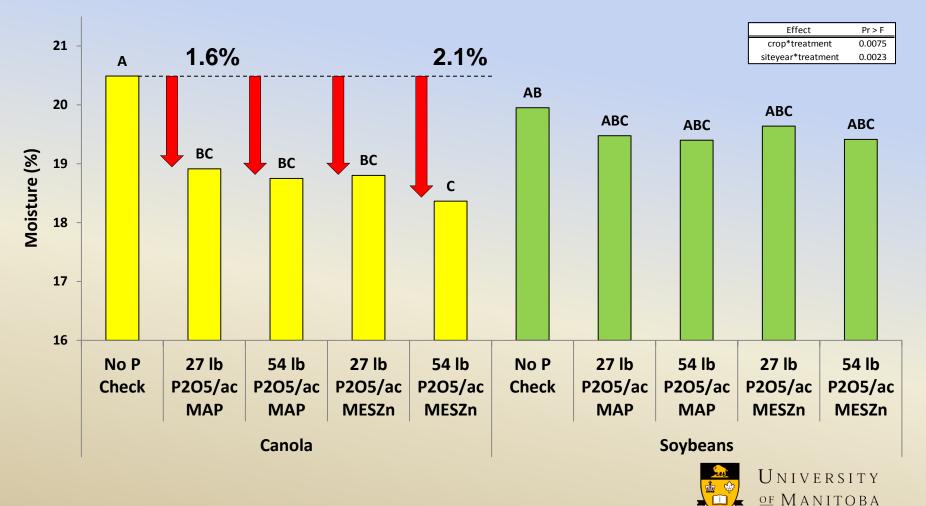
Corn Early Season Biomass (V4)

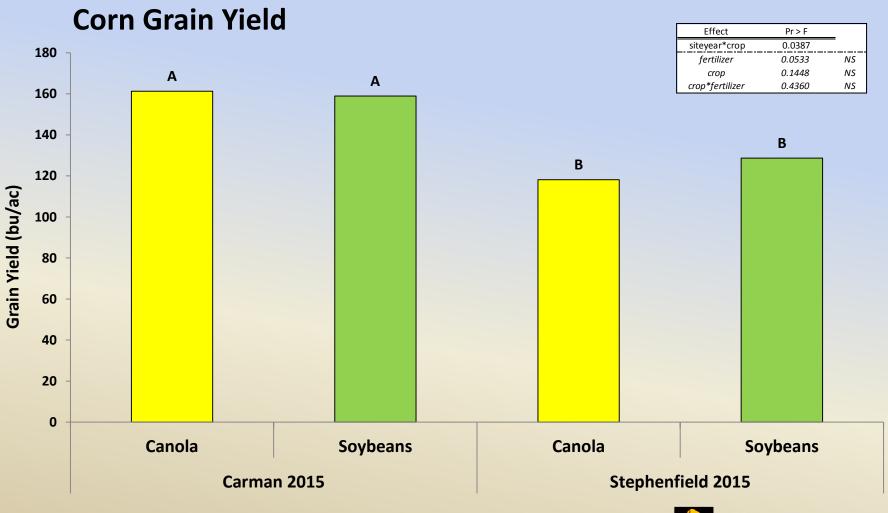
Maturity Ratings: Later silking date and delayed maturity (>1 day) in control plots compared to P treatment plots (data not shown).

CORN ON CANOLA


CORN ON SOYBEANS

No P check Sideband 54 lb P₂O₅/ac MAP Sideband 54 lb P₂O₅/ac MESZn **No P check**


Repeated moisture readings, Milk (R3) until harvest

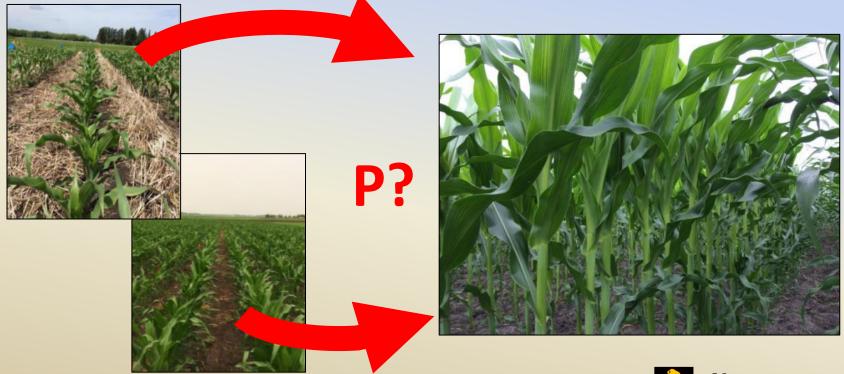


Recorded at harvest

Corn Grain Moisture (Harvest)

Recorded at harvest, adjusted to 15.5%

Rotation Study: Summary


- All fertilizer P treatments significantly increased early season biomass in corn following canola and advanced maturity, regardless of the crop.
- Grain yields not affected this year
 - Preceding crop and/or P fertilization
- 1.6 2.1% decrease in grain moisture at harvest with addition of starter MAP and MESZn in corn on canola

UofM & MCGA's Corn Agronomy Project <u>Tillage Study</u>

Fertilization strategies for corn planted in strip tillage vs. conventional tillage

Tillage Study: Background

Strip till:

- reduces risk of erosion
- provides opportunity to preplant band P
- may provide a warmer or cooler seed bed zone vs. conventional tillage
- cool soil may aggravate P deficiencies

Application of starter P may:

- accelerate early-season crop development
- decrease grain moisture
- increase grain yield

P deficiency symptoms at V3 in striptill

Spring sideband MAP 54 lb P₂O₅ ac⁻¹

No P Check

Tillage Study: Site Information

Location	Carman, MB	Portage la Praire, MB
Planting Date	May 25/2015	May 26/2015
Soil Temperature at Planting	19°C at 2" (5cm)	14°C at 2" (5cm)
Harvest Date	October 16/2015	October 19/2015
Olsen-P (ppm)	8	11
Crop Residue	Wheat	Barley

Corn Hybrid: DKC 26-28RIB (2150 CHU)

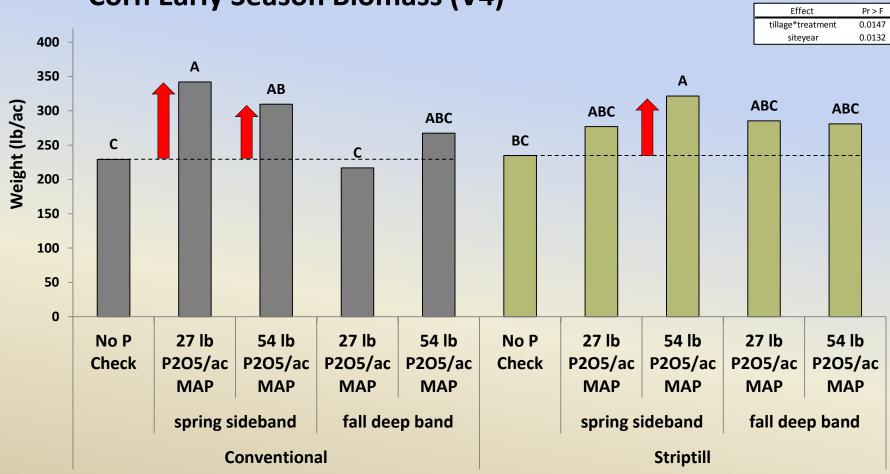
2 Previous Tillage Treatments

Tillage Study: 5 Fertilizer Treatments (lbs/ac, spring (2" by 1") and fall application (4-5"))

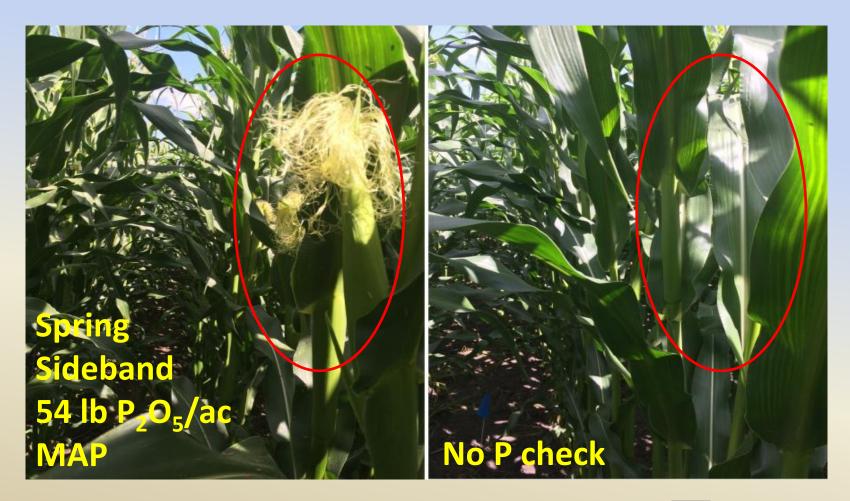
CONTROL

1. No P Check

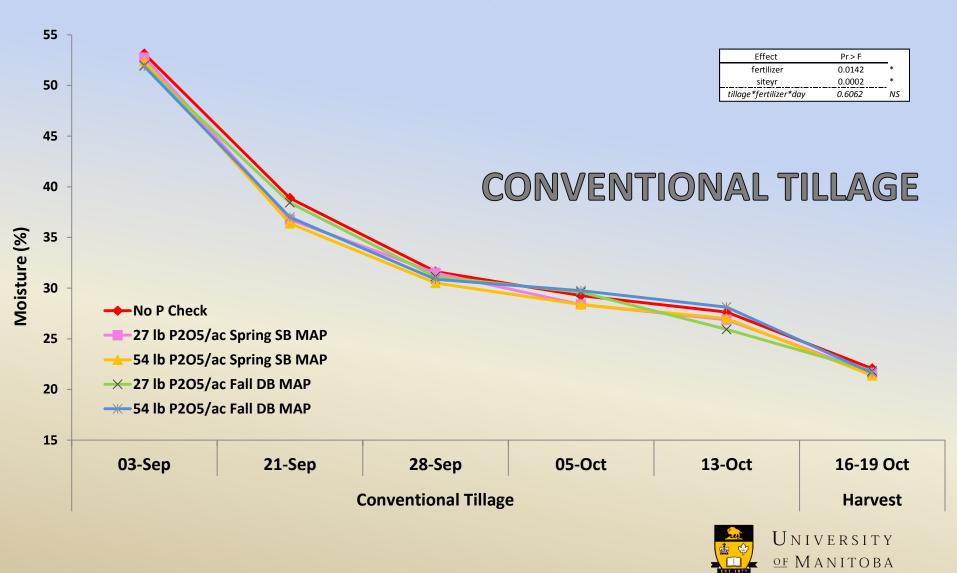
MAP (11-52-0) Only


2.	27 P ₂ O ₅	SPRING SB
3.	54 P ₂ O ₅	SPRING SB

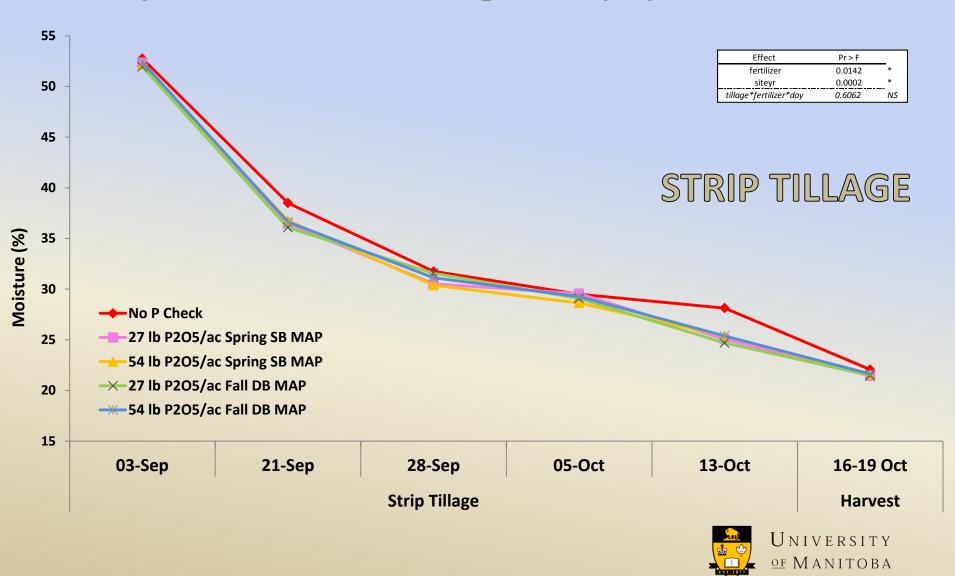
4.	27 P ₂ O ₅	FALL	DB
5.	54 P ₂ O ₅	FALL	DB

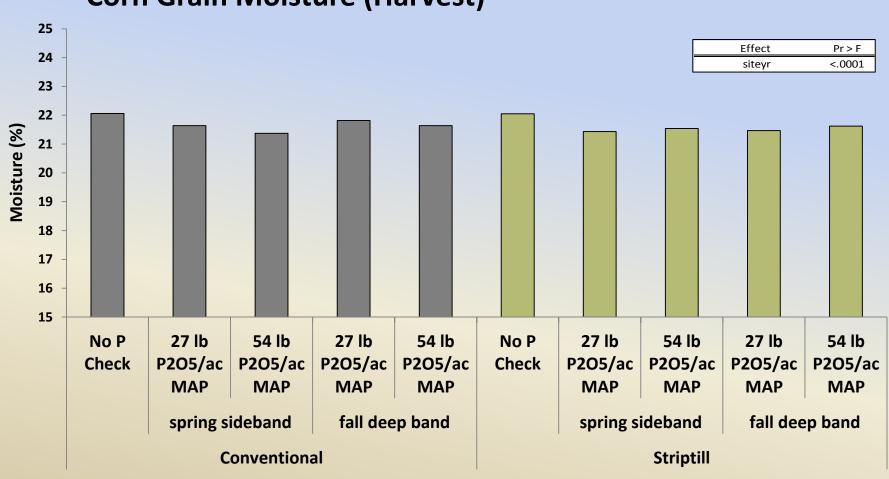

Collected at V4, 10 plants from each plot (P, Zn analysis)

Corn Early Season Biomass (V4)



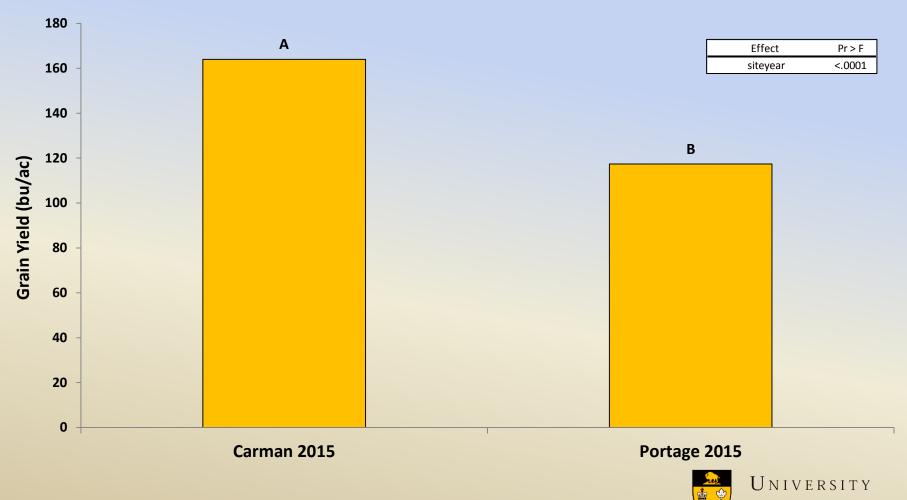
Maturity Ratings: Later silking date and delayed maturity (>1 day) in control plots compared to 3 of 4 P treatment plots (data not shown).




Repeated moisture readings, Milk (R3) until harvest

Repeated moisture readings, Milk (R3) until harvest

Recorded at harvest


Corn Grain Moisture (Harvest)

UNIVERSITY of Manitoba

Recorded at harvest, adjusted to 15.5%

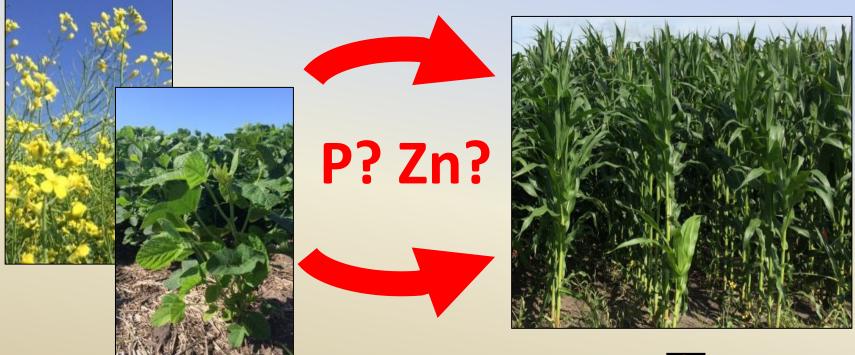
Corn Grain Yield

of Manitoba

Tillage Study: Summary

- Fertilizer P increased early and midseason growth and advanced maturity, especially if sidebanded in spring on conventionally tilled land
- Grain yields and grain moisture not affected this year by tillage and/or P fertilization

Good News...


Corn planted in strip till yielded as well as corn planted in conventional till and had similar grain moisture

U of M & MCGA's Corn Agronomy Project <u>Amended Crop Rotation Study</u>

Mosaic Microessentials SZ fertilization for corn grown after canola vs. soybeans

MESZn Study: Site Information

Location	Kelburn Farm
Planting Date	June 1, 2015
Soil Temperature at Planting	13°C at 2" (5cm)
Harvest Date	October 26/2015
Olsen-P (ppm)	41 (avg.)
DTPA-Zn (ppm)	2.3 (avg.)
Olsen-P (ppm)	24–63 (range)
DTPA-Zn (ppm)	1.7 – 3.9 (range)

Corn Hybrid: DKC 26-28RIB (2150 CHU)

2 Previous Crop Treatments

U N I V E R S I T Y of Manitoba

MESZn Study: 3 Fertilizer Treatments

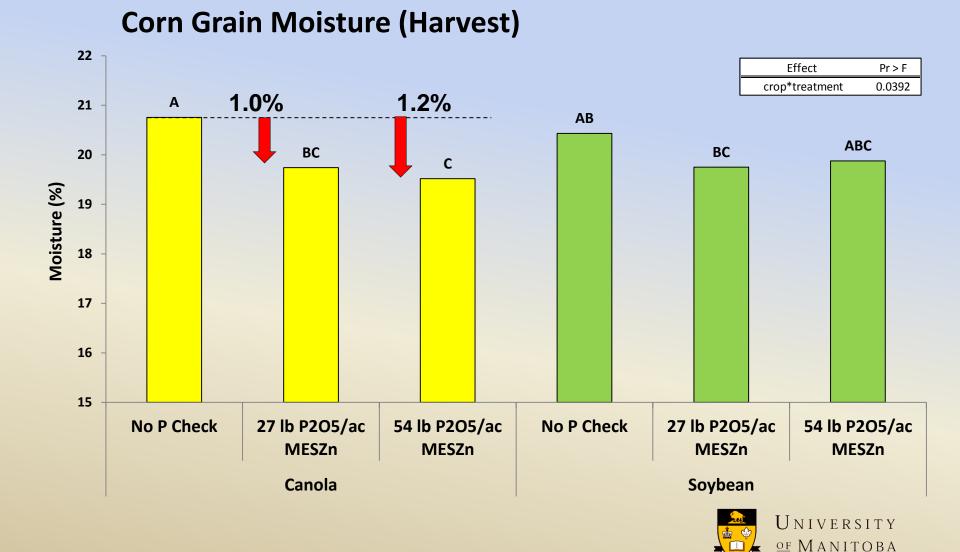
(lbs/ac, sidebanded 2" by 2" at planting)

CONTROL

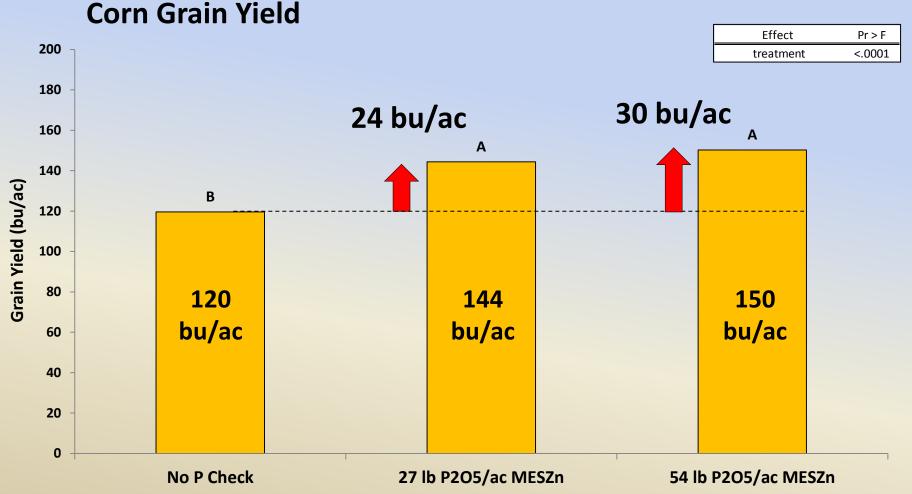
1. No P Check

MicroEssentials SZ (12-40-0-10S-1Zn)

2.	27 P ₂ O ₅	0.68 Zn	6.8 S
3.	54 P ₂ O ₅	1.35 Zn	13.5 S



MicroEssentials (December 14, 2015) http://www.microessentials.com/#fusion-process


MESZn Study: Preliminary Results

Recorded at harvest

MESZn Study: Preliminary Results

Recorded at harvest, adjusted to 15.5%

MESZn Study: Summary

In spite of the high concentrations of Olsen P at this site, the corn grain yields for the MESZn treatments were 24 – 30 bu/ac greater than those in the control, regardless of previous crop.

Plans for the 2016 season of corn fertilization studies:

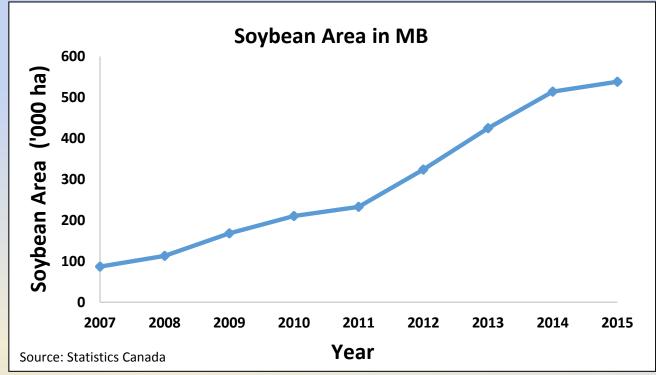
- Crop Rotation Study: 2 sites with corn test crop
 Carman, MB and Portage la Prairie, MB
- <u>Tillage Study</u>: 2 sites with corn test crop
 - Carman, MB and Portage la Prairie, MB
- Mosaic MESZn Study: 1 site with corn test crop
 - Kelburn Farm (near St. Adolphe, MB)

Acknowledgments

Manitoba Corn Growers Association Canada-Manitoba GF2 Program Western Grains Research Foundation Thank You! Agrium Mosaic **MAFRD** (J.Heard) **Canada-Manitoba CDC (C.Cavers) Plateau Sands Farm (C.Dyck)** University of Manitoba (G.Bardella, I.Vaisman, E. Wallace, G.Bartley, A.Iverson) **Richardson Pioneer (B.Hellegards)** Western Economic Diversification Canada

Contact Information

Email: <u>magdalena.rogalsky@umanitoba.ca</u> Twitter: @umrog


Phosphorus Management for Soybeans – Final Results

Gustavo Bardella, Don Flaten, and John Heard

Background

- Soybeans remove large amounts of P (≥ 0.85 lb P₂O₅/bu)
- Wide row spacings and narrow seed/fertilizer spread increase risk of fertilizer toxicity in seed row (current guidelines recommend a maximum of 10 lb P₂O₅/ac)
- Questions remain about P fertility, P fertilization and P placement in soybeans

Two Soybean Fertilization Studies 2013-2015

Study #1 – Short term effects of P fertilizer rate & placement

- Assess risk of reduced stand and yield from seed-placed P
- Assess dry matter and seed yield response to P fertilizer placements and rates

Study #2 – Long term effects of soil P fertility

 Assess soybean response to starter P fertilizer and soil P fertility from historic fertilization practices

Manitoba Soybean P Project #1: Effects of P Fertilizer Rate & Placement on Plant Stand and Seed Yield

Materials and Methods

- 8 sites in 2013
- 10 sites in 2014
- 10 sites in 2015
- 28 site years in total

Materials and Methods, cont'd.

- Row spacing varied from 7 to 12"
- Opener type: knife or disc ... low seed bed utilization

					Row	Seeder
Site	Ols	Olsen P (ppm)		Soil Texture	Spacing	Opener
	2013	2014	2015		Inches	Туре
Roseisle	N/A	4 (VL)	4 (VL)	Sandy Loam	8	Knife
Melita	3 (VL)	5 (L)	7 (L)	Sandy Clay Loam	9.5	Knife
Brandon	5 (L)	6 (L)	5 (L)	Clay Loam	8	Knife
Carman	N/A	15 (H)	7 (L)	Sandy Clay Loam	8	Knife
Roblin	7 (L)	22 (VH)	8 (L)	Clay Loam	9	Knife
Beausejour	8 (L)	13 (M)	7 (L)	Heavy Clay	9	Disc
Arborg	14 (M)	22 (VH)	14 (M)	Silty Clay	9	Disc
St Adolphe	23 (VH)	25 (VH)	71 (VH)	Heavy Clay	7.3	Knife
Portage	34 (VH)	18 (H)	10 (L)	Clay Loam	12	Disc
Carberry	44 (VH)	11 (M)	15 (H)	Clay Loam	12	Disc

Materials and Methods, cont'd.

- Monoammonium phosphate (MAP, 11-52-0) was applied in spring, at the rates of 20, 40 and 80 lb P₂O₅/ac ... in the seed row, side banded or broadcast
- Dekalb 24-10 RY seeded for a target of 210,000 plants/ac
- Treatments replicated 3 or 4 times
- Plant stand assessed with 2, 3 and 4 weeks after planting
- Midseason biomass collected at R3
- Seed yield and quality
- Data analysed using SAS Proc Glimmix

Results

CHE

SEED PLACED

Effect of P rate and placement on soybean stand four weeks after planting

		Year	
	2013	2014	2015
# Sites	8	10	10
Plant Stand for Control ('000 plants/ac)	84 - 263	116 - 258	70 - 301
# Sites with Plant Stand Reduction			
@ 20 lb SP	0	1 ª	0
@ 40 lb SP	0	2 ^{a,b}	1 ^c
@ 80 lb SP	2 ^d	2 ^{a,b}	1 ^d
% Stand Reduction*	39 - 71	36 - 51	23 - 41

^a At Portage in 2014, seed row P reduced emergence for all rates of P, compared to the control, at 5% level of probability. ^b At Carberry in 2014, seed row P reduced seedling emergence at 40 and 80 lb P₂O₅ per acre.

^c At Roseisle in 2015, seed row P reduced seedling emergence at a rate of 40 lb P₂O₅ per acre, but not at 80 lb per acre. Therefore, this reduced emergence may have been random error.

^d At Melita & Carberry in 2013, & Roblin in 2015 seedling emergence was reduced only by seed row P at 80 lb P₂O₅ per acre.

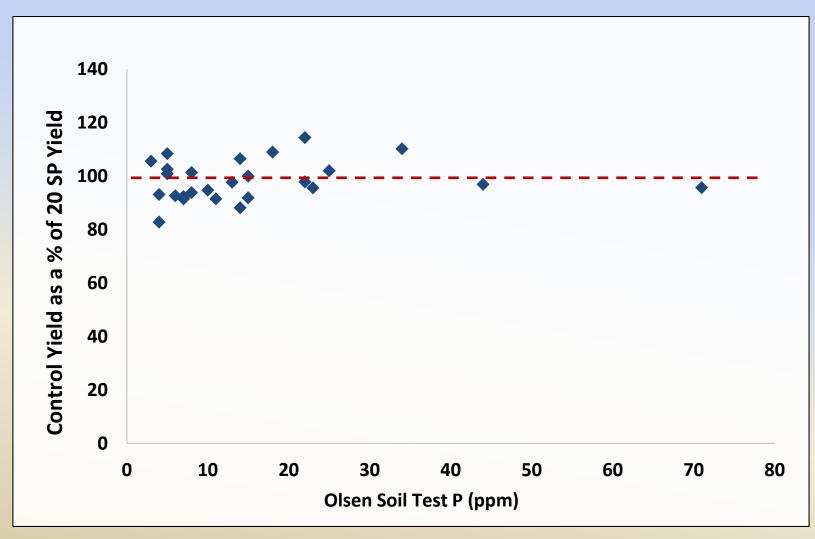
Why was seedling damage from seedrow P so rare?

- Soybeans are less sensitive to seedrow P applied as MAP (11-52-0) than previously thought
- However, seedling damage from seedrow P was still a risk ... especially in medium to coarse textured soils and/or when wide row spacing and low seed bed utilization increased fertilizer concentration in the seed row
- Weather conditions should also be considered, especially rainfall and soil moisture

Effect of P rate and placement on midseason dry matter biomass (DM at R3)

	Year					
	2013	2014	2015			
# Sites Sampled	6	7	8			
Biomass Yield for Control ('000 lb/ac)	4.41 - 6.37	2.11 - 3.77	2.10 - 4.33			
# Sites with DM <u>Increase</u>	0	0	0			
# Sites with DM <u>Decrease</u>	2*	0	0			
% DM Decrease*	39 - 59	0	0			

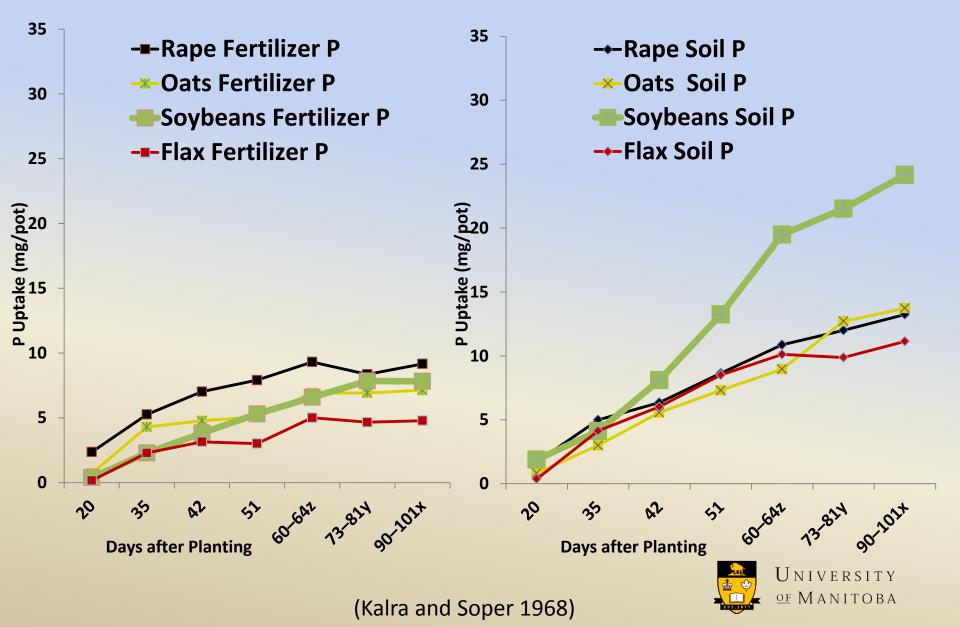
* Sites were affected by the 80 lb P_2O_5/ac seed-placed and/or 40 lb P_2O_5/ac broadcast treatments with significant reductions, compared to the control, at 5% level of probability.


Effect of P rate and placement on soybean seed yield for 28 site years in Manitoba

		Year	
	2013	2014	2015
# Sites	8	10	10
Mean Seed Yield (bu/ac)	46	42	51
Seed Yield for Control (bu/ac)	23 - 66	18 - 60	37 - 65
# Sites with Yield <u>Increase</u>	0	0	0
# Sites with Yield <u>Decrease</u>	2*	0	0
% Yield Decrease*	29 - 36	0	0

* Sites were affected only by the 80 SP treatment (80 lb P_2O_5/ac seed-placed) with significant reductions, compared to the control, at 5% level of probability.

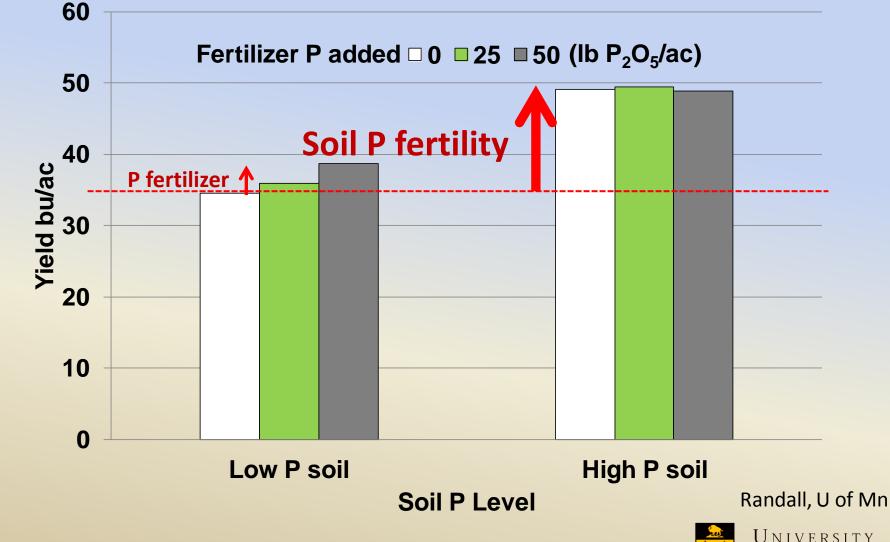
Relationship between soil P fertility and <u>relative</u> yield of control treatments (no P added) vs. seed placed 20 lb P_2O_5/ac in P rate and placement study



Why no yield response to P?

- P fertilization regardless of soil test P, P rate and P placement did not increase seed yield for soybean
- Even in soils with very low soil P levels such as 3 ppm Olsen P, soybeans were able to take up enough P from the soil to produce high yields without responding to any P fertilizer rate and placement

Soybeans are efficient feeders for soil P



Why so little yield loss from reduced plant stands?

- Soybean plants have a compensatory growth ability that ensures biomass and seed yield stability when there is modest reduction in plant stand
- Other studies show satisfactory yield recovery when the plant stand does not get lower than 100,000 plants/acre (replant threshold)
- The probability of reduced stand from typical agronomic rates of seed-placed P fertilizer is small and the risk of reduced seed yields is even smaller ... so, seedrow placement of P for soybeans is a small risk, with little, if any reward

In Minnesota research, soybean response to soil P <u>fertility</u> was greater than to P <u>fertilizer</u>

Univ Of Ma

OF MANITOBA

Manitoba Soybean P Project #2:

Long term effects of soil P fertility ... Soybean response to starter P fertilizer and soil P fertility from historic fertilization practices

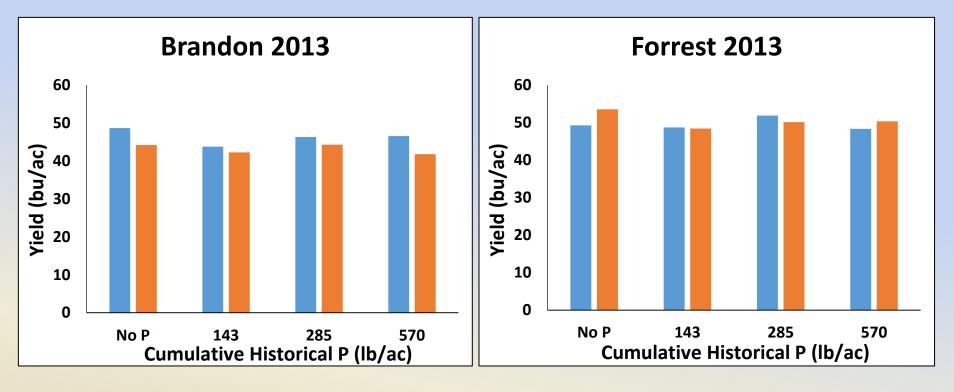
MATERIALS AND METHODS

Located on previous long term P fertilization trial

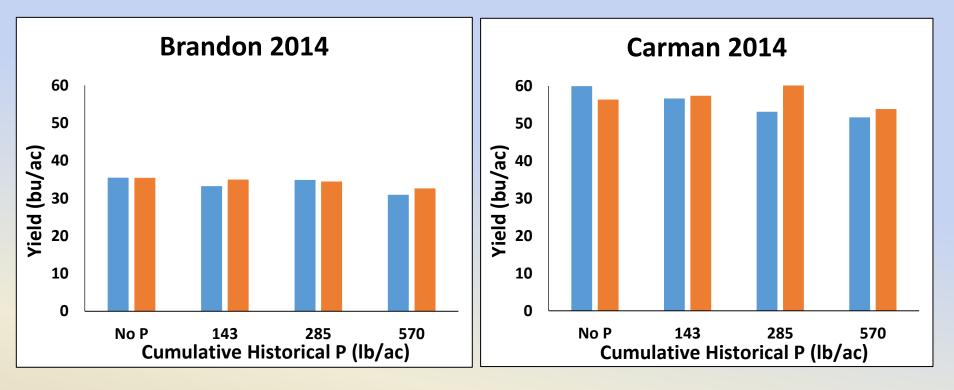
Soil Test Olsen P (ppm)								
Historical P (lb/ac)	Brandon	Carman	Forrest					
0	9	20	6					
143	22	31	15					
285	33	53	22					
570	54	91	40					

3 sites (Brandon, Forrest & Carman) selected from a trial established in 2002 to investigate crop Cd uptake from P fertilizer as human food safety concern

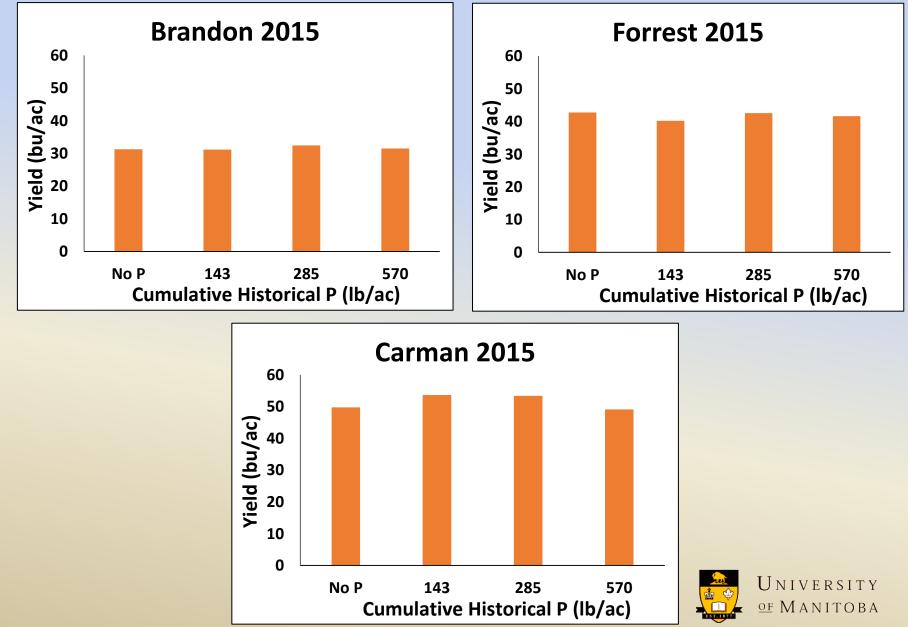
- 3 rates of MAP fertilizers varying in Cd concentration were applied annually for 8 years, until 2009, with cumulative rates of 143, 285 and 570 lb P/ac over the 8 year period (~325, 650, and 1300 lb P₂O₅/ac total)
- No fertilizer P added from 2010-2012


MATERIALS AND METHODS

 Starter P side-banded in half of each plot at planting in 2013 and 2014 (20 kg P/ha or ~ 40 lb P₂O₅/acre)


Soybean Seed Yield 2013

With side-banded starter P (18 lb/ac) Without starter P


Soybean Seed Yield 2014

With side-banded starter P (18 lb/ac, for 2nd year) Without starter P

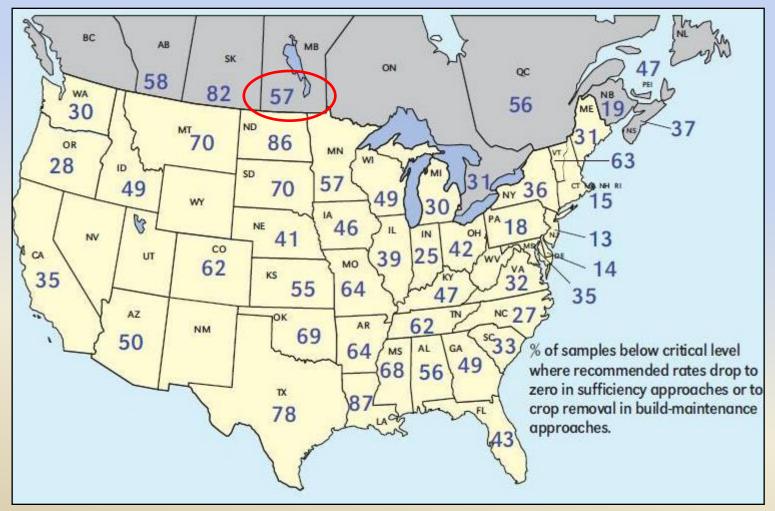
Soybean Seed Yield 2015

Summary and Conclusions for Soybean P Fertilization Project #2

- No seed yield response to soil P fertility or starter P fertilizer in any year at any site, including two sites with low Olsen soil test P levels (< 10 ppm)
- The threshold for soybean yield responses to soil P fertility and/or P fertilizer appear to be very low in Manitoba soils, lower than those in the soils tested so far
- Observations of higher soybean yields on Manitoba soils with higher P fertility may be due to other factors

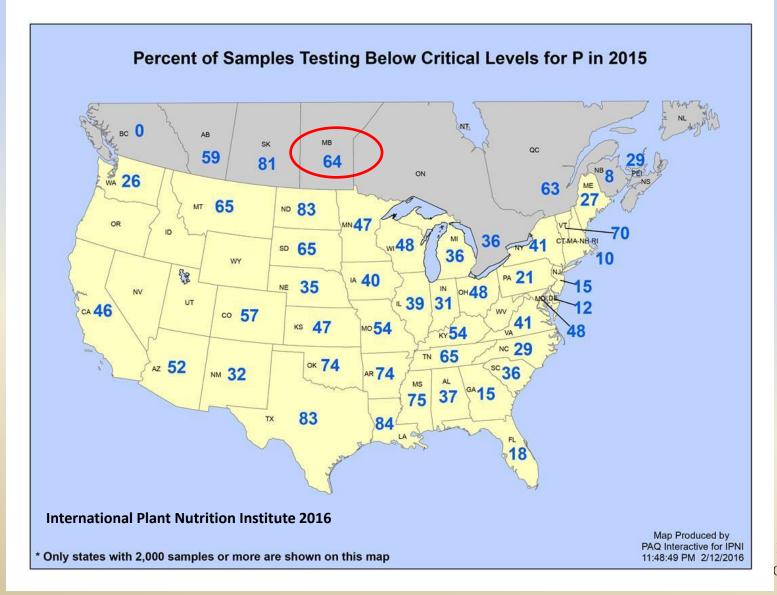
Soybeans may not "care" about P fertilizer, but what about the crop after soybeans?

The phosphorus deficit hangover ...

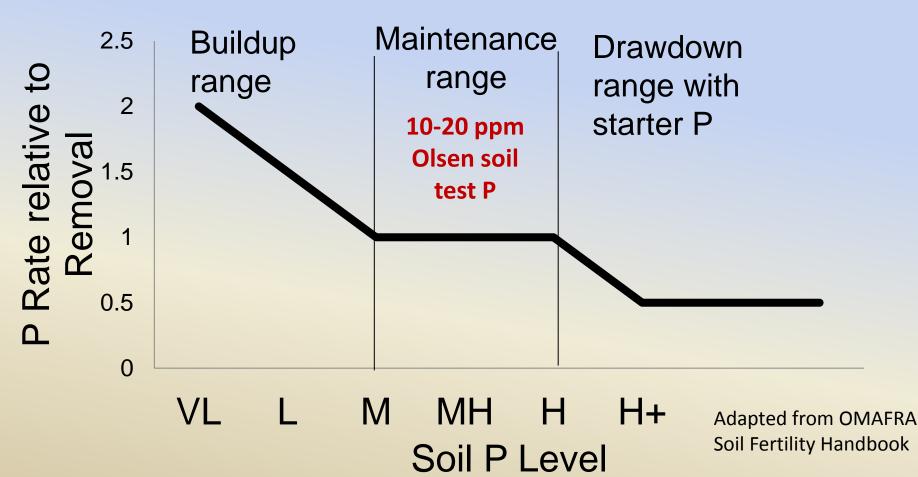


P Removal by Annual Crops							
	Yield P ₂ O ₅ Removed						
Crop	Level/Acre	lb/ac	lb/bu				
Wheat	45 bu	36 <mark>(26)</mark> *	0.59				
Canola	45 bu	75 (46)	1.0				
Soybeans	40 bu	43 <mark>(34)</mark>	0.85				
Barley	80 bu	45 (34)	0.43				
Peas	50 bu	43 <mark>(34)</mark>	0.68				
Oats	100 bu	41 (26)	0.26				
Corn	100 bu	63 <mark>(44)</mark>	0.44				

*Removed in grain, only

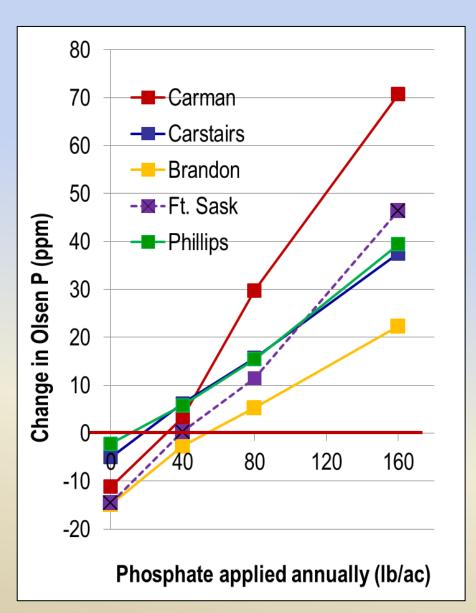

Majority of Manitoba Soils Are Deficient in P According to % Less Than Critical Level

Fixen et al. Better Crops 2010



Majority of Manitoba Soils Are Deficient in P According to % Less Than Critical Level

ITY


A fertilization concept to move soil P levels into an optimum range over time

Olsen P also followed P balance in Alberta and Manitoba soils after 8 years of P applications in a durum-flax rotation

- Large increases in Olsen P occurred with high P rates
- Olsen P declined when no P applied
- At 40 lb phosphate/acre/year, Olsen
 P was maintained at most sites (but flax P removal is low)
- Surplus P to raise Olsen P by 1 ppm:
 - 16-23 lb P₂O₅/ac at Carman
 - 29-32 lb P₂O₅/ac at Carstairs
 - 27-35 lb P_2O_5 /ac at Brandon
 - 21-25 lb P_2O_5 /ac at Ft. Sask.
 - 32-41 lb P₂O₅/ac at Phillips


Grant et al. unpublished

Recommended Strategies for Maintaining P Fertility in Soybean Fields

- Apply sufficient P in side- or midrow bands to match crop removal on annual basis
 - Use a rotational fertilization strategy over several years :
 - Add extra P to crops in rotation that tolerate high rates of seed-placed P
 - Periodically band P into soil during fall tillage ... eg. MAP with AS prior to canola, which responds to fert. P & N
 - Build soil P to target level, but avoid excess accumulation, eg. manure applied at rate to meet crop N requirements will provide P benefit for several years

🗶 🛃	፟ ୭ • ୯ - ۵ =					P fert'n for rot	tation interactive	4.xlsx - Microsoft E	xcel		
File	Home Insert Page Layout	Formulas Dat	ta Review V	/iew Acrobat							
	🖌 Cut Calibri 🕞 1	1 · A A	= = = *	۶۰۰ 📑 Wrap	Text Gen	eral 👻		Normal	Bad	Good	*
Paste	Copy - Format Painter B I U -	• 🔕 • A •		🗏 🛊 📴 Merge	e & Center 👻 💲	· % • .00 .00	Conditional Form		Calculation	Check Cel	
	pboard 🖬 Font	F2		Alignment	G	Number 🕞	Formatting * Tab	Ie *	Styles		
	K19 🔻 🦢 🏂		1								
	АВ	С	D	E	F	G	Н	I J	K	L	Μ
1	Phosphorus Balance	Calculat	ion for a F	Rotation (Version 4	- October 1	l <i>,</i> 2014)				
		Typical	Yield	Р	P Rem	noved*	Annual	Notes: Do	oes not acco	unt for nu	ıtrients
2	Crop	Yield	Units	Applied	per unit	per acre	Balance	removed	when straw	or chaff is	5
3					(lb P ₂	0₅/ac)		removed	or burned		
4	HR Spring wheat	60	bu/ac	30	0.59	35	-5				
5	Winter wheat	75	bu/ac	30	0.51	38	-8				
6	Barley		bu/ac		0.42	0	0				
7	Oats		bu/ac		0.26	0	0				
8	Canola	40	bu/ac	20	1.04	42	-22				
9	Soybeans	40	bu/ac	10	0.84	34	-24				
10	Peas		bu/ac		0.69	0	0				
11	Flax		bu/ac		0.65	0	0				
12	Corn (grain)		bu/ac		0.44	0	0				
13	Other**				0.00	0	0				
14	Total for Rotation			90		149	-59				
16	Fill in any of the blue	cells for	typical re	ntation vi	olds and	P annl'n					
17	*P removal figures a				-		ide				
18	**For nutrient remo					-					
19	i or nathent remo		ler crops			STRUCCE.					
20											
	Interactive P balance worksho	eet Nutrient	t removal table	<u>/</u> \$2/							
Ready											
	🚺 🬔 Universit 🤇	Phospho	C:\Users\.	🚺 C:\Use	ers\ 📔 C:\l	Jsers\ 📔 C:\	Users\ 📴 I	nbox 🏼 🍢	Cowell P 🍖 06	530 3C 🛛 🔀	Microsof

Overall Summary and Conclusions

- Fertilizer P appears to have a low probability of increasing yield, regardless of rate or placement
- The probability of reduced stand or yield from typical agronomic rates of seed-placed P is small ... but wide row spacings and sandy soils may pose a risk in some years
- Soil P fertility appears to have little effect on soybean yield

Worrying about P fertilization for soybeans may be a distraction ... instead, focus on maintaining soil P fertility for the rest of your crop rotation:

- Consider subsurface banding fertilizer away from seed, rotational P fertilization, or manure app'n at N based rates
- Avoid fall broadcast P fertilizer ... agronomically & environmentally unsound

Acknowledgements

- Special thanks to G. Bardella, J. Heard (co-authors) as well as M. Rogalsky, D. Lange, Y. Lawley, C. Grant, & R. Mohr
- B. Hellegards (Richardson Pioneer)
- C. Linde and C. Cavers (Canada Manitoba Crop Divers'n Ctr.)
- J. Kostuik and A. (Parkland Crop Diversification Foundation)
- M. Svistovski (Agriculture and Agri-Food Canada)
- R. Burak and J. Pawluk (Prairies East Sustainable Ag Inst.)
- S. Chalmers (Westman Ag Diversification Organization)
- C. Autsema
- Manitoba Pulse and Soybean Growers Association
- Western Grains Research Foundation
- Canada-Manitoba Growing Forward 2 Program
- Agrium, Agvise Laboratories, BASF, Monsanto-Dekalb

Thank You!

