Using the 4 R's for improved N management for corn and water quality for MN??

Gyles Randall (Professor Emeritus) and

Jeff Vetsch (Assistant Scientist)

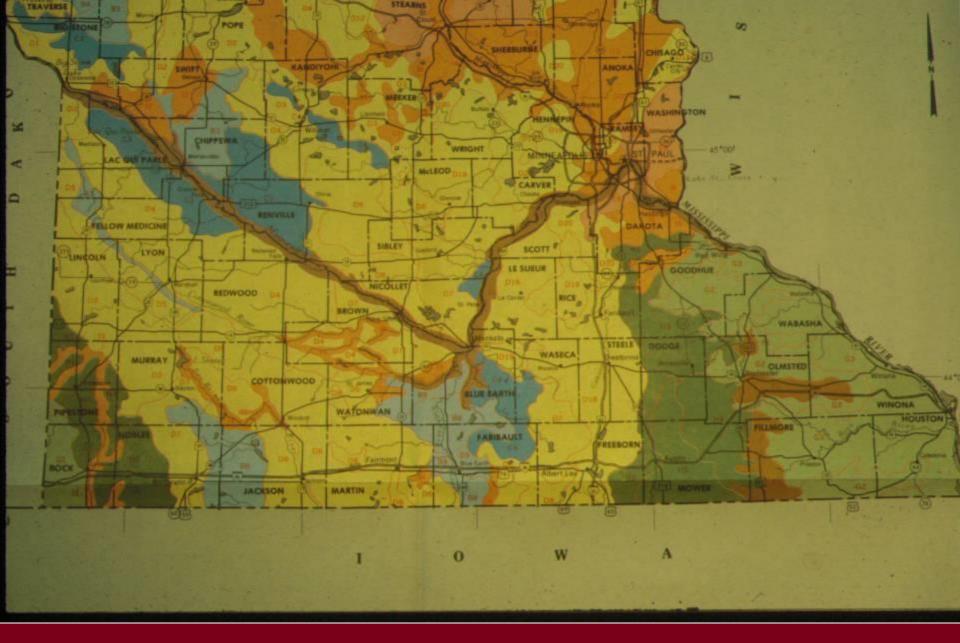
Univ. of Minnesota Southern Research and Outreach Center Waseca, MN 56093

AGVISE Seminar Series

January 5, 6, & 7, 2016

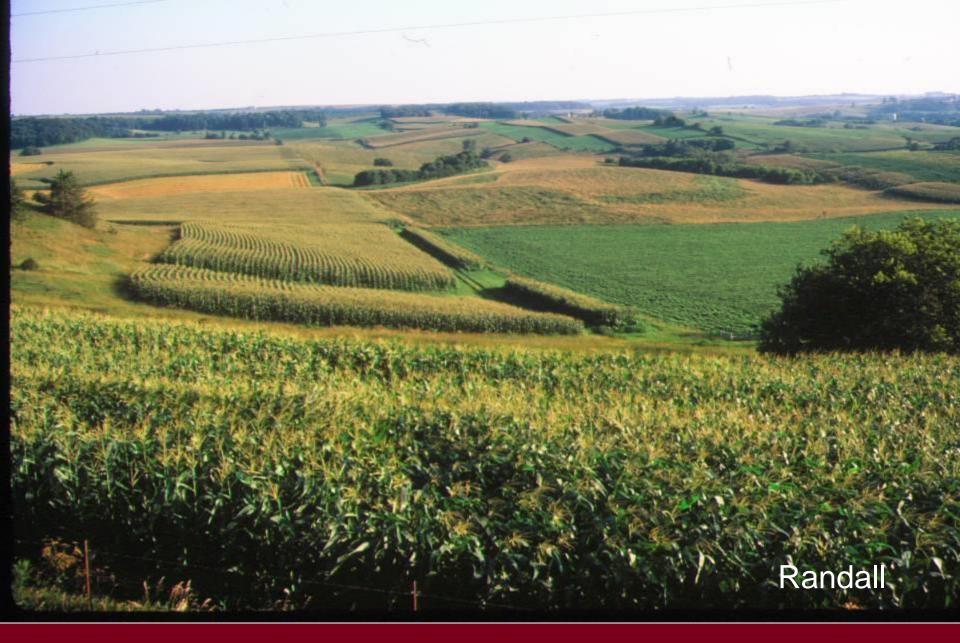
Nitrogen

- Required at higher rates than any other nutrient for optimizing corn yield and profitability
- More than 600,000 tons of N are applied for corn each year in Minnesota alone.
- N BMP's soil (region) specific in Minnesota.

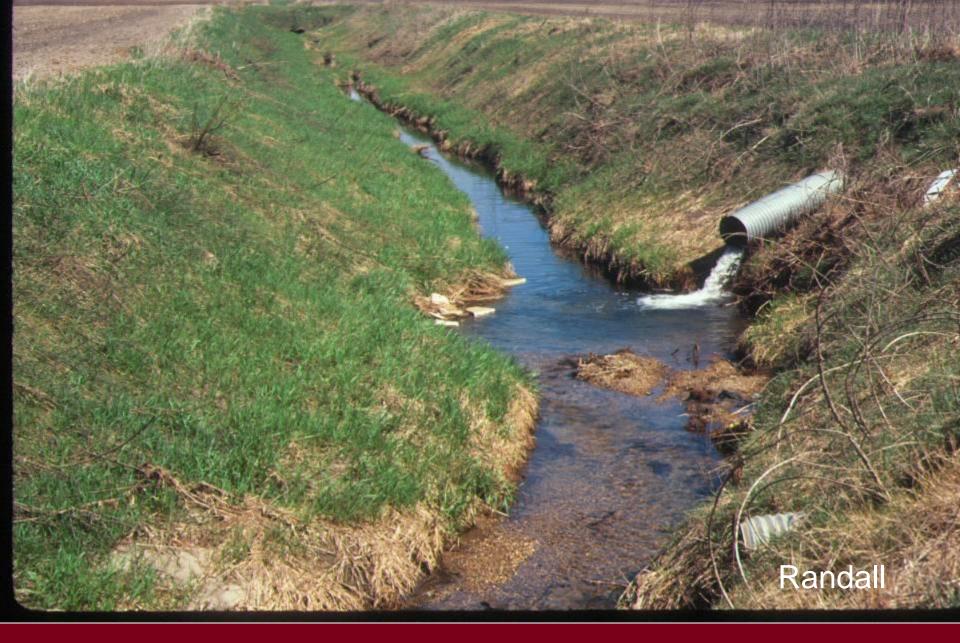

Region Specific BMPs for N

Northwest

Southwest and West Central Central and East Central


Southeast

South Central


University of Minnesota Driven to Discover[™]

University of Minnesota Driven to Discover™

University of Minnesota Driven to Discover[™]

University of Minnesota Driven to Discover™

RISK Yield Loss & N Loss Economic and Environmental

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Management Practices

- 1. Cropping system
- 2. Rate of N application
- 3. Time of N application
- 4. Nitrification inhibitors
- 5. Source of N
- 6. Cover Crops

UNIVERSITY OF MINNESOTA Driven to Discover™ wardship | The ×

Regarding the Mannesony of the Annotation of the

www.nutrientstewardship.com

THE RIGHT TIME FOR NUTRIENT STEWARDSHIP IS RIGHT NOW. Sign Up to Receive E-Mails with the Latest 4R News and Resources

IMPROVE YOUR BOTTOM LINE AND THE ENVIRONMENT WITH 4R NUTRIENT STEWARDSHIP.

Today's farmers live in a world where environmental concerns and increased food demand create challenges never seen before. Meet those challenges with 4R Nutrient Stewardship by choosing the <u>Right</u> Nutrient Source to apply at the <u>Right</u> Rate in the <u>Right</u> Place at the <u>Right</u> Time.

LEARN MORE ABOUT THE 4RS

START BUILDING YOUR 4R PLAN

THE LATEST IN NUTRIENT STEWARDSHIP

The Fertilizer Institute launches the 2014 4R Advocate Program this week, calling for entries from retailers to highlight the exceptional nutrient stewardship practices of their grower customers.

WHEN YOU PRACTICE PROPER NUTRIENT MANAGEMENT YOU WILL:

E

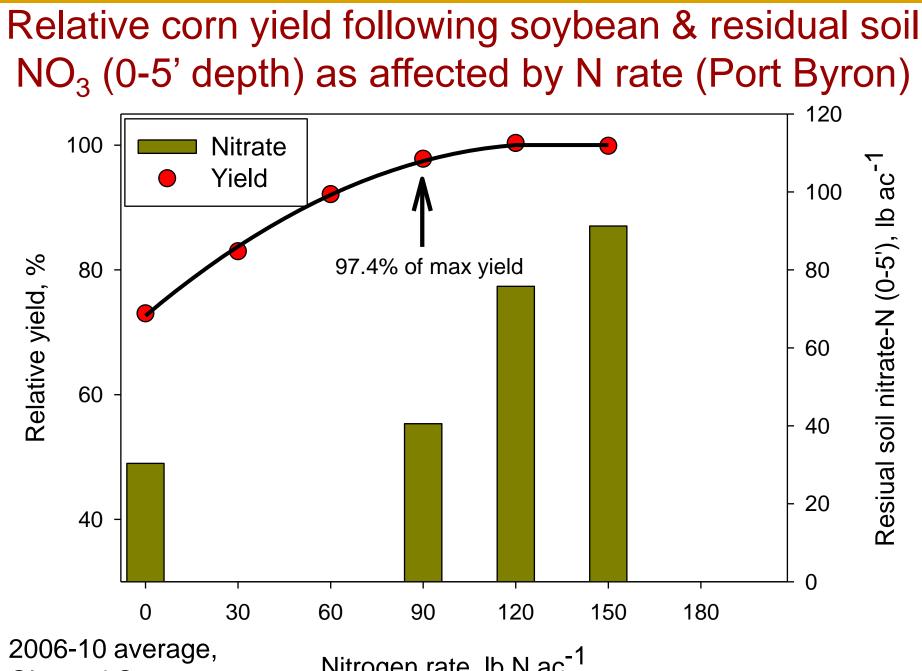
Increase crop production & improve profitability

4R Principles

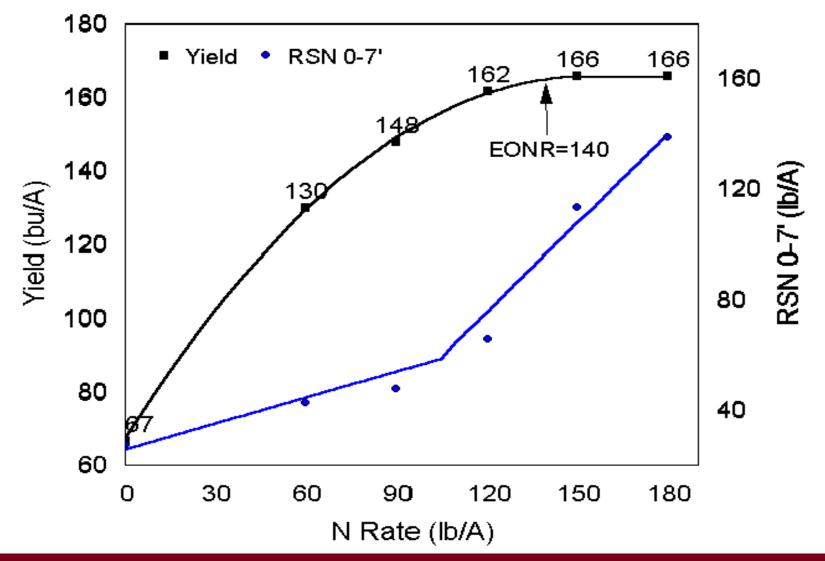
 The 4R nutrient stewardship principles are the same globally, but how they are used locally varies depending on field and site specific characteristics such as soil, cropping system, management techniques and climate.

UNIVERSITY OF MINNESOTA Driven to Discover™

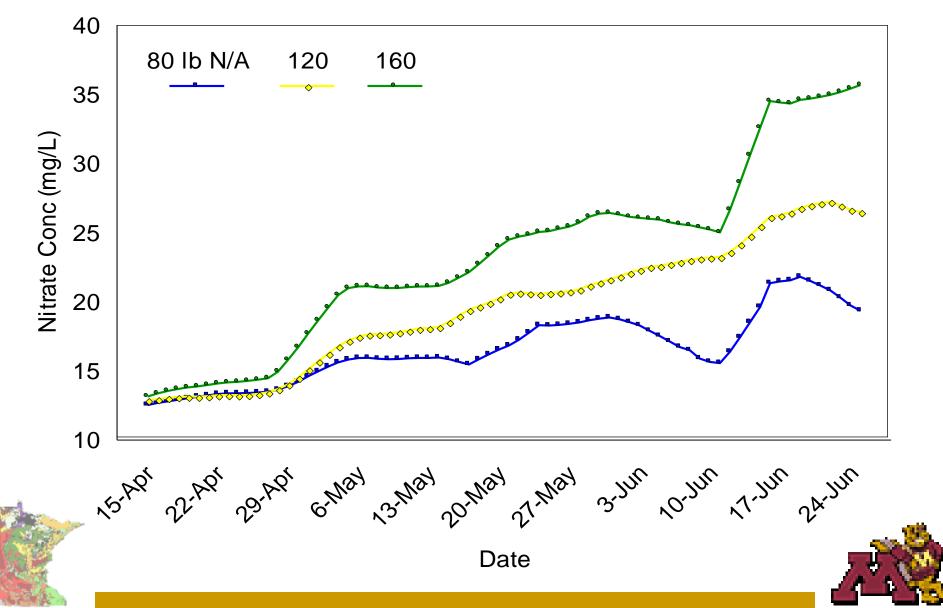
4R's


- Right Source Ensure a balanced supply of essential nutrients, considering both naturally available sources and the characteristics of specific products, in plant available forms.
- Right Rate Assess and make decisions based on soil nutrient supply and plant demand.
- Right Time Assess and make decisions based on the dynamics of crop uptake, soil supply, nutrient loss risks, and field operation logistics.
- Right Place Address root-soil dynamics and nutrient movement, and manage spatial variability within the field to meet site-specific crop needs and limit potential losses from the field.

Rate of N Application


UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Olmsted County


Nitrogen rate, lb N ac⁻¹

Continuous Corn, 2001–03 Olmsted Co.

UNIVERSITY OF MINNESOTA Driven to Discoversm

Effect of N rate for corn after soybean on NO₃-N concentrations in tile drainage water in 2001.

Time of N Application and N-Serve

UNIVERSITY OF MINNESOTA Driven to Discoversm

April – June Rainfall

30-yr normal = 10.7"

- 1997 = 8.5" (20% below)
- 1998 = 11.8" (10% above)
- 1999 = 15.8" (48% above)

Corn yield as affected by time of application.						
	Years					
Time/Placement	ement 1997-'98 1999 3-yr Avg.					
	Yield (bu/A) ^{1/}					
Fall/under row	188	145	174			
April/between rows	188	181	186			

 $\frac{1}{2}$ Across all four tillage systems.

Primary points

- Although 3-yr average tillage system yields ranged from 176-184, there was no interaction between Time of N and Tillage
- Spring N in 1999 increased grain yield by 36 bu/A, silage yield by 1.3 T/A, and N recovery by 42% compared to a late October application.
 - fall N can be risky

UNIVERSITY OF MINNESOTA Driven to Discover™

Corn yield as influenced by N-Serve, time of
application, and N-Serve at Waseca, 1981-82.

N Treatment		Time of A	Time of Application		
Source	N-Serve	Fall	Spring		
		Yield	l (bu/A)		
None		1	04		
Urea	No	157	164		
"	Yes	155	167		
An. Ammonia	No	162	168		
<u> </u>	Yes	170	173		

Corn grain yield after soybeans as affected by fall and spring application of N-Serve with anhydrous ammonia at Waseca, 1994-99.

	N-Serve				
Time of Application	No Yes				
	6-Yr Avg. Yield (bu/A)				
Fall (late Oct.)	161	171			
Spr. (April)*	172	176			

* A yield response to spring-applied N-Serve occurred in years when June rainfall was excessive, but the 4 bu/A (6-yr avg.) increase was not statistically significant.

> UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Corn yield, N recovery, and NUE as influenced by time of application and N source at Waseca.

N Mana	gement		3-Yr Avg.		
Time	Source	N-Serve	Yield	N recovery	NUE
			bu/A	%	bu/lb FN
Fall	Urea	No	152	43	0.36
66	66	Yes	158	47	0.42
66	AA	No	168	60	0.51
66	66	Yes	170	63	0.53
Spr. PP	Urea	No	185	76	0.66
66	AA	No	182	84	0.64
	None		112		

UNIVERSITY OF MINNESOTA Driven to Discoversm

Corn production and nitrate loss as affected by time of N application and N-Serve.

		-	7-Year Ave	Nitrate-N	
N Tre	Treatment Corn N Economic		Economic	Loss in	
Time	N-Serve	Yield	Recovery	ecovery Return	
		Bu/A	%	\$/A	Lb/A/Inch
Fall	No	131	31	67	3.8
"	Yes	139	37	78	3.1
Spring	No	139	40	85	3.1
Split	No	145	44	97	3.3
LSI	⊃ (0.10) =	4			
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	

1987-93, Waseca, MN

Nitrogen (NO₃) Loss from Tile Drainage

UNIVERSITY OF MINNESOTA Driven to Discoversm

Lamberton 1973-1985

- Site history
 - no N or manure for previous 10 yrs
 - corn, soybean, small grain rotation
- Soil: Normania cl, mod. well drained
- Crop: Continuous corn
- Fertilizer N Rates (Spring), 1973-79
 18 (as starter), 100, 200 & 400 lb N/A
- 12 45'x50' separated drainage plots (3 reps)

1973-75 Nitrate-N Concentration

Annual	_	Year	
N rate	1973	1974	1975
lb N/A		mg/L -	
18	13	19	19
100	15	25	23
200	13	37	43
400	12	65	81
Annual flow (inches)	1.46	3.58	5.04

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

1973-75 Nitrate-N Loss

Annual		Year	
N rate	1973	1974	1975
lb N/A		Ib N/A -	
18	4	15	17
100	5	20	22
200	4	27	53
400	5	48	107

- Corn yields were poor (70-110 bu/A) Dry
- No movement of nitrate below 6'

1976-79 Nitrate-N Concentration

Annual	Year				
N rate	1976	1977	1978	1979	
lb N/A	mg/L				
18	*	28	21	16	
100	*	48	53	47	
200	*	73	119	106	
400	*	150	191	172	
Annual flow (Inches):		0.56	1.99	8.21	

* = Drought, no tile flow

UNIVERSITY OF MINNESOTA Driven to Discoversm

1976-79 Nitrate-N Loss				
Annual		Year		
N rate	1976	1977	1978	1979
lb N/A		- Ib N/A	\	
18	*	4	10	30
100	*	6	26	82
200	*	6	43	165
400	*	18	87	374 <u>1/</u>

* = Drought, no tile flow & no grain yield.

- $\frac{17}{1}$ Nitrate moved below 10' with 400-lb rate
- Corn yields (1977-79) = 131-139 bu/A.

Waseca 1975-1980

- Site history
 - corn in 1974, 150 lb N/A
- Soil: Webster cl, poorly drained
- Crop: Continuous corn
- Fertilizer N rates (Spring), 1975-79
 0, 100, 200, & 300 lb N/A
- 12 45' x 50' separated drainage plots (3 reps)

1975-80 Nitrate-N Concentration

1975-79	Year ^{1/}				
N rate	1977	1978	1979	1980 <u>²/</u>	
lb N/A/yr	mg/L				
0	13	16	13	9	
100	41	28	19	10	
200	58	45	32	12	
300	85	65	44	23	
Ann. Tile Flow (In.)	4.8	5.6	17.1	2.9	

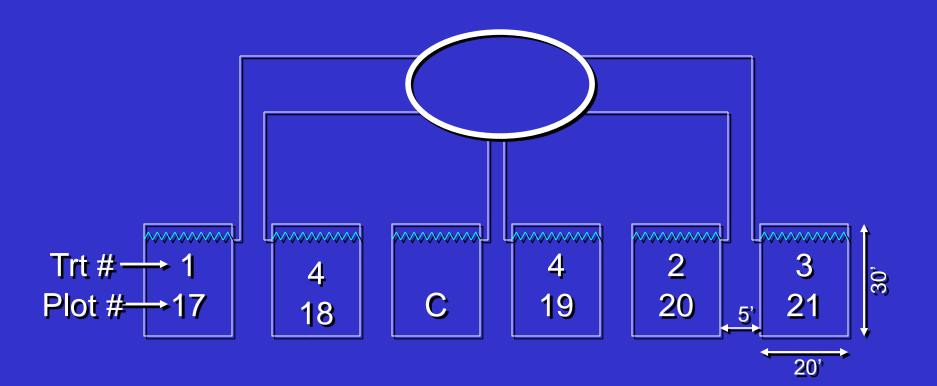
 $\underline{1'}$ No drainage occurred in 1975-1976 – Dry.

 $\frac{2}{2}$ N was not applied in 1980.

UNIVERSITY OF MINNESOTA **Driven to Discover**SM

Nitrate-N Leaching Depth

Lamberton: 400 lb N/A (1973-79) 1983 to 19' 1985 to 20', 2X as much in 12-20' as in 0-5'


Waseca: 300 lb N/A (1975-79) 1979 to 10' denitrification loss??

UNIVERSITY OF MINNESOTA Driven to Discoversm

Corn-Soybean Rotation Drainage Study, Waseca

Time and Rate of N Application and Nitrification Inhibitors (N-Serve)

UNIVERSITY OF MINNESOTA Driven to Discoversm

Effect of time of AA application and N-Serve on corn yields after soybean from 1987-2001 at Waseca

	Time of N Application		
Parameter	Fall	Fall+N-Serve	Spring
15-Yr Avg. Yield (bu/A)	144	153	156
15-Yr Avg. FW NO ₃ -N Conc. (mg/L)	14.1	12.2	12.0
15-Yr N recovery in grain (%)	38	46	47
7-Yr Avg. Yield (bu/A)*	131	146	158

* Seven years when statistically significant differences occurred.

Conclusions

- Adding a nitrification inhibitor (N-Serve[™]) to fall-applied anhydrous increased corn yield and NUE, while reducing nitrate concentration in tile drainage.
- A preplant application of anhydrous increased yield an average of 12 bu/ac in 7 of 15 years (wet springs) at Waseca.

UNIVERSITY OF MINNESOTA Driven to Discover™

Eff	Effect of N rate on yield of corn after soybean, net								
re	return to fertilizer N, and nitrate-N concentration								
	in ti	le drai	nage at \	Naseca (2)	000–2003).				
-	N Treatment 4-Yr Yield 4-Yr FW								
	Time	Rate	N-Serve	Avg.	NO ₃ -N conc.				
-		lb /A		bu/A	mg/L				
		0		111					
	Fall	80	Yes	144	11.5				
	Fall	120	Yes	166	13.2				
	Fall	160	Yes	172	18.1				
	Spr.	120	No	180	13.7				

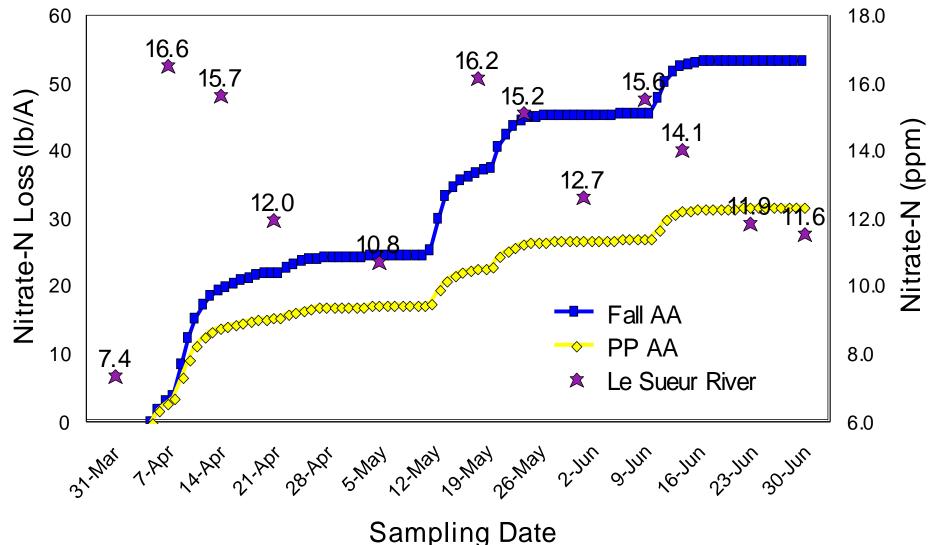
Nitrate-N concentrations and losses in tile water as affected by rate and time of N application at Waseca.

			FW	2	000-20	03
N appli	cation	_	NO ₃ -N	-N NO ₃ -N Lost		.ost
Rate	Time	N-Serve	Conc.	С	Sb	Total
lb N/A			mg/L	lb/A/4 cycles ·		cles
80	Fall	Yes	11.5	115	90	205
120	Fall	Yes	13.2	121	99	220
160	Fall	Yes	18.1	142	139	281
120	Spr.	No	13.7	121	98	219

Conclusions

- Nitrate losses were reduced 27% by decreasing the application rate from 160 lb N/A to the recommended rate of 120 lb N/A for corn after soybean without reducing yield.
- Nitrate losses were reduced 14% by decreasing the application rate to 80 lb N/A from the recommended 120-lb rate BUT yields were reduced by 17%.

Fall vs. Spring N Summary


Corn Yield: often higher with Spring N

Nitrate-N: Little difference in concentration or loss between Fall and Spring application, if proper/right N rate is used.

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

1999 tile water NO_3 -N loading at Waseca vs. NO_3 -N concentrations in the Le Sueur River 2.3 miles from Mankato.

Source of N

• Some fertilizer N sources perform better than others.

UNIVERSITY OF MINNESOTA Driven to Discover™

Spring N Source Study at Waseca

- Nitrogen Sources
 - AA, urea, UAN
- Time of N application

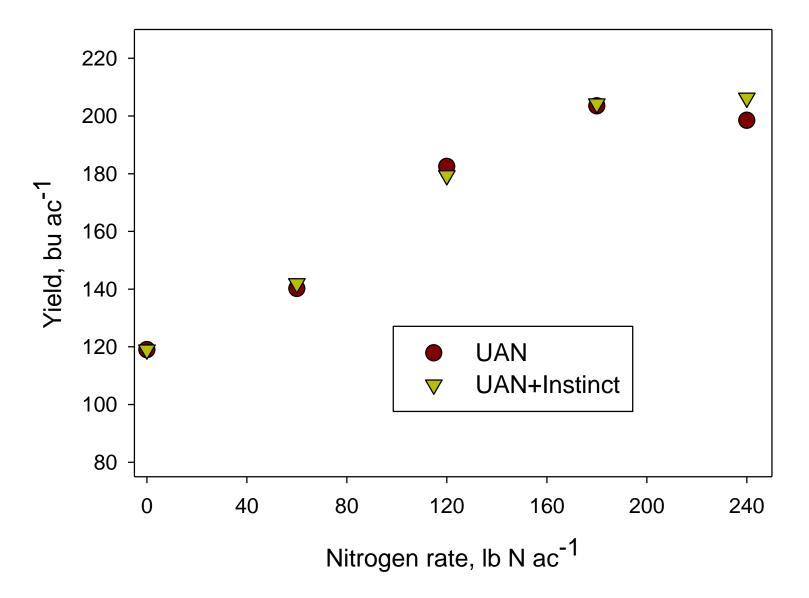
 Preplant incorporated and pre-emerge
- Nitrification inhibitors
 - N-Serve™
- Corn following soybean at 100 lb N/ac

UNIVERSITY OF MINNESOTA

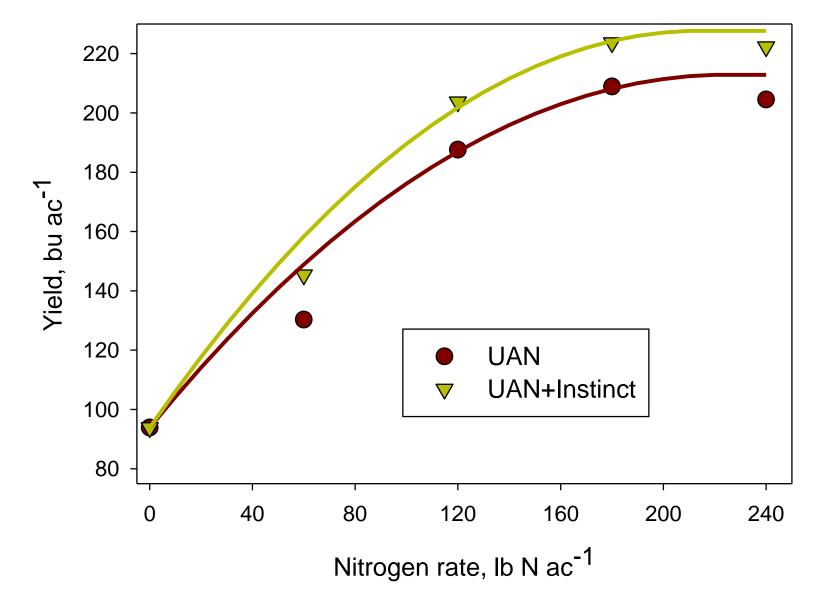
Driven to Discover™

Spring Nitrogen Source (2007-2010)

Ν	N Management		Grain	NUE
Source	Time	N-Inhibitor	Yield	Fert. N
			bu/A	bushel/lb N
Check	None	No	117 d	
AA	PP	No	170 ab	0.59
AA	PP	N-Serve	176 ab	0.60
Urea	PPI	No	182 a	0.66
UAN	PPI	No	171 bc	0.55
UAN	Pre	No	166 c	0.49



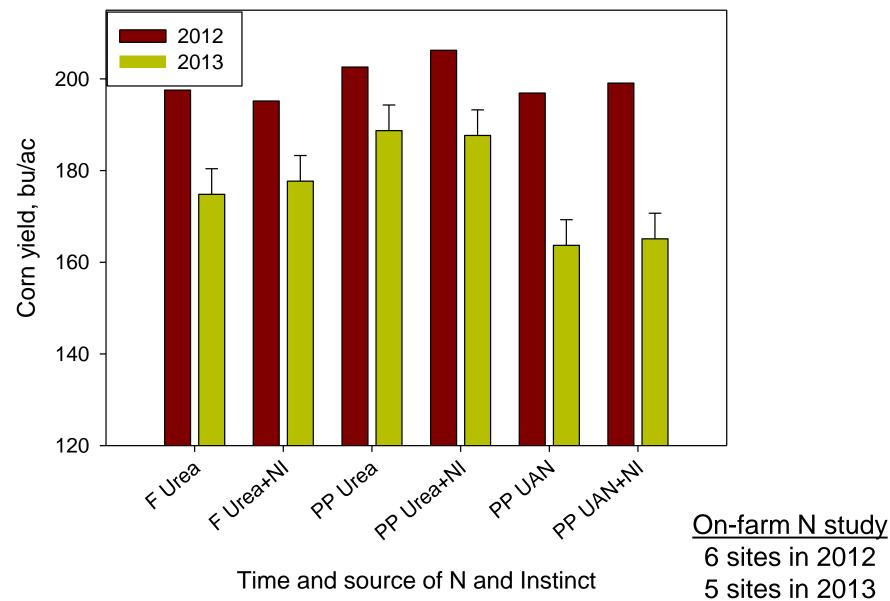
The Effects of Nitrogen Source and Time of Application with and without a Nitrification Inhibitor



UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

Continuous corn yield as affected by N rate (UAN) and Instinct (Webster cl) in 2012.

Continuous corn yield as affected by N rate (UAN) and Instinct (Webster/Nicollet cl) in 2013.



Corn yields as affected by Instinct and N rate (stream injected UAN at V2).

- In a dry spring (2012) corn grain yields were not affected by Instinct.
- In the wet spring of 2013 (6" of rain in 19 days after application) corn yields were greater with Instinct.

Corn yield as affected by N source, time of application and Instinct in south-central, MN.

Effect of N Source and Timing on corn yield after soybean at Waseca.

		Year			
N Treatment	2011	2012	2013	3-Yr Avg.	
		Yie	ld (bu/A)		
Urea	188 a	168 a	193 ab	183	
Urea + Instinct	187 a	170 a	197 a	185	
AA	189 a	183 a	190 bc	187	
AA + N-Serve	190 a	183 a	188 c	187	
Fall	188 a	171 a	188 b	182	
		178 a	196 a	188	
Spring	190 a	1/0 d	Wet spr.		

2007 - 2010 Summary

Funding provided by AFREC

UNIVERSITY OF MINNESOTA Driven to Discoversm

<u>4-Yr Hydrologic Characteristics</u>

	Precipitation			Drainage
Year	May-Sept.	Departure	Total	Time
	inches	%	Ac-in	
2007	24.99	+22	11.6	48% in Oct.
2008	17.01	-17	3.3	91% in A-Jun
2009	11.00	-46	0.8	64% in O-Nov.
2010	34.61	+69	21.0	28% in Mar.
				46% in Sept.

Driven to Discover^{ss}

4-Yr Nitrate-N Results

Crop	Ν		Nitrate-	N
Rotation	Rate	Time	4-Yr Avg. Conc.	4-Yr Total
	lb/A		mg/L	Ib/A
C-S- <u>Corn</u>	0		6.1	37.7
"	60 + 40	SPL	7.8	44.8
66	120	PP	8.2	52.1
S-C- <u>Corn</u>	0		4.6	34.0
66	60 + 80	SPL	7.9	64.2
66	160	PP	8.8	62.8
C-C- <u>Soy</u>	0		5.5	30.5
"	0		8.4	40.9
66	0		8.7	38.3

Funding provided by AFREC

UNIVERSITY OF MINNESOTA Driven to Discover™

4-Yr Corn Yield Results

Crop	Ν		Grain	Total	
Rotation	Rate	Time	Yield	N uptake	NUE
	lb N/A		bu/A	lb N/A	bu/lb N
C-S- <u>Corn</u>	0		113	72	
"	60 + 40	SPL	182	141	0.69
"	120	PP	186	142	0.61
	Significance:		NS	NS	
S-C- <u>Corn</u>	0		66	45	
"	60 + 80	SP	172	135	0.76
"	160	PP	165	137	0.62
	Significa	nce:	NS	NS	

Funding provided by AFREC

4-Yr Corn Yield Summary

- 1) Corn yields were 15 bu/A (9%) greater for C-S-Corn than for S-C-Corn.
- Corn grain yield and total N uptake were similar between the 100% preplant N rate and the 85% N rate split-applied.
- 3) NUE (bu/lb N) was consistently greater for the split-applied 85% N rate. (Need to consider economics).

<u>Acknowledgement</u>

 The authors are most grateful to the Agricultural Fertilizer Research and Education Council (AFREC) and Minnesota Corn Growers for financial assistance for this research project.

CROPPING SYSTEMS

Effect of CROPPING SYSTEM on drainage volume, NO₃-N concentration, and N loss in subsurface tile drainage during a 4-yr period (1990-93) in MN.

Cropping	Total	Nitrate-N	
System	discharge	Conc. Loss	
	Inches	ppm	lb/A
Continuous corn	30.4	28	194
Corn – soybean	35.5	23	182
Soybean – corn	35.4	22	180
Alfalfa	16.4	1.6	6
CRP	25.2	0.7	4

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

Conclusions

- Cropping system has greater effect on hydrology and nitrate losses than any other management factor! (RISK)
- Perennial crops (alfalfa and grasses) compared to row crops (corn and soybean) reduce
 - -Drainage volume by 25 to 50%
 - –Nitrate loss by > 95%

UNIVERSITY OF MINNESOTA Driven to Discover™

Relative effectiveness of management practices to reduce nitrate losses in

	Tile D	Ground water	
Practice	N. Corn Belt	S.&C. Corn Belt	N. Corn Belt
Cropping	VH (100)*	VH	VH (100)*
system			
Rate of N	L–H (10-40)	M-H	L-H (10-50)
Time of N	L (5-20)	Μ	M-H (20-50)
Source of N	VL (0-10)	VL	L (0-15)
Man. vs. Fert.			
Tillage	VL (0-10)	L	VL (0-10)
Cover crop	L (5-20)	Μ	L (5-20)

* Scale of effectiveness (0 - 100)

Engineered Tile Systems

- Controlled drainage
- Drainage through perennial buffers
- Bio-reactors
- Constructed wetlands
- Closed loop management
- Two-tier ditches

Christianson, L.E., and R.D. Harmel. 2015. 4R Water Quality Impacts: An assessment and synthesis of forty years of drainage nitrogen losses. J. Environ. Qual. October. Technical Report.

 Reviewed and quantitatively analyzed nearly 1000 site-years of subsurface tile drainage N load data to develop a more comprehensive understanding of the impacts of 4R practices (application of the right source of nutrients, at the right rate and time, and in the right places) within drained landscapes across North America.

- They concluded that some of the 4R practices for reducing nitrate-N loads were stronger than others.
 - Optimizing N rate was important and will continue to receive primary research and regulatory focus
 - The lack of significant differences between N application timing or application methods (placement and source) was inconsistent with the current emphasis placed on timing as a WQ improvement strategy.
 - Application timing analysis was complicated by differences in application rates between timing treatments; highest application rates resulted in greatest N losses.

Will the 4R approach to N management be successful in reducing nitrate-N losses to surface and ground water to meet the goals of Nitrogen Loss Reduction Strategies being established??

- They are directionally correct but will NOT accomplish the goals themselves.
- Engineering options can be helpful depending on geographic location and landscape.
- Shifting acreage away from corn to other cropping systems is the most effective strategy as it decreases N inputs to the landscape and consequently reduces N losses to water significantly.

Thanks Questions? **Gyles Randall** http://sroc.cfans.umn.edu

UNIVERSITY OF MINNESOTA Driven to Discoversm