1) Improving Soil Sampling Consistency

Keys to Successful Soil Sampling

2) Early Summer Topsoil Sampling• Early Summer vs October Comparison Project

Richard Jenny Agronomist AGVISE Labs, Benson, MN

Early Summer Topsoil Sampling Early Summer vs October Comparison Project

Increasing trend in 2.5 acre grid sampling Shift from post-harvest sampling to early summer

(late-May to early-July) sampling In-crop sampling in unfertilized soybeans Corn/soybean rotation Topsoil samples only Primarily test for: P, K, pH, OM, Zn, CEC 4-year project with > 300 GPS sample points Sampled in growers fields

Early Summer Sampling 2001 – 2013: Benson Lab

Benson, MN - Early Season Soil Samples Jan. 1 upto Aug. 1 2001 to 2013 ~ 40% of all Benson soil samples are Early Season ~ 60% of all Benson soil samples are Fall post-harvest 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

AGYISE

4 year and > 300 sample points Corn/Soybean Rotation Unfertilized soybean Topsoil samples

Soil Test Potassium

4 year and > 300 sample points Corn/Soybean Rotation Unfertilized soybean Topsoil samples

Organic Matter (%)

	1373				
Averages: June vs October					
	Time of Sampling				
	Early October				
S (Ib/a)	32 37				

4 year and > 300 sample points Corn/Soybean Rotation Unfertilized soybean Topsoil samples

and the second second		Long and					
Averages: June vs October							
	Time of Sampling						
	Early Octobe						
Salts	0.43	0.47					

4 3.5 3 Soluble Salts (mhos/cm) October 2.5 2 1.5 1 0.5 y = 1.0418x + 0.0124 $R^2 = 0.6693$ 0 0.5 1.5 2 2.5 3.5 1 3 0 4 Soluble Salts (mhos/cm) June

Soil Test Soluble Salts

4 year and > 300 sample points Corn/Soybean Rotation Unfertilized soybean Topsoil samples

Averages: June vs October				
	Time of Sampling			
	Early October			
P (ppm)	23	20		
K (ppm)	190	197		
рН	7.4 7.4			
OM (%)	5	4.8		
Zn (ppm)	1.8	1.7		
S (Ib/a)	32	37		
Salts	0.43	0.47		

R-square value				
Time of Sampling				
0.906				
0.85				
0.925				
0.871				
0.613				
0.636				
0.669				

4 year and > 300 sample points Corn/Soybean Rotation Unfertilized soybean Topsoil samples

Phosphorus: 2013 ND Data

43 sample points, 5 fields Unfertilized soybeans Topsoil samples Northwood, ND - 2013

Potassium: 2013 ND Data

3 sample points, 5 fields Infertilized soybeans opsoil samples Iorthwood, ND - 2013

43 sample points, 5 fields Unfertilized soybeans Topsoil samples Northwood, ND - 2013

43 sample points, 5 fields Unfertilized soybeans Topsoil samples Northwood, ND - 2013

43 sample points, 5 fields Unfertilized soybeans Topsoil samples Northwood, ND - 2013

Early Summer Topsoil Sampling Early Summer vs October Comparison Project

> Benefits all involved: Growers Retailers Consultants Samplers Applicators

Improving Soil Sampling Consistency Keys to Successful Soil Sampling The Goal and Purpose of Soil Sampling

To collect a "<u>representative</u>" soil sample that reflects the "true" average value for the "grid" or "zone" or "field" that is cost effective, useful for nutrient management and maximizes yield.

Goal is to obtain a sample(s) that accurately represents the field:

- A. <u>Accuracy</u>: "Hit the bulls-eye"
 - How close to the "true" average value.
- **B.** <u>**Precision**</u>: "Continuously hitting the bulls-eye"
 - Being able to reproduce the soil test values after resampling it numerous times.
 - Repeatability

Goal is to obtain a sample(s) that accurately represents the field: Accuracy and Precision

Ex. Accuracy of +/- 15% and precision level of 80% means: If you resample a field 10 times, then 8 out of 10 times the soil test values will be within 15% of the average.

"Accuracy increases with the increase of cores." "Nitrogen and phosphorus more variable than potassium." "N and P need more cores to be accurate as compared to K." "20 well taken cores, will give you +/-15% accuracy at 80% precision." Dr. W.C. Danke, NDSU Soil Scientist

Improving Soil Sampling Consistency Keys to Successful Soil Sampling Largest Source of Inconsistency

The **largest source of inconsistency** in soil testing comes from the actual soil sample collection process.

- A. Not enough cores
- B. Field Size: Field/Zone/Grid too large in size
- C. Depth consistency Too deep or too shallow
- D. Core Quality: Tillage vs standing stubble conditions
- E. Sampling after manure or fertilizer application
- F. Contaminated bucket or soil bag
- G. Field anomalies
- H. Strip-Till

Improving Soil Sampling Consistency Keys to Successful Soil Sampling <u>Number of Cores to Collect</u>

- Conventional Composite Samples
 - Minimum 15 cores, 20 is better
- Zone Samples
 - Minimum 10-12 cores, 15 is better
- Grid Samples
 - Minimum 8-10 cores, 12 is better

If followed, then you should get the correct value (+ or – 15%) at least 80% of the time

Number of cores necessary to provide various levels of Accuracy and Precision.

(Field size ~ 80 acres, conventional tillage and composite soil sample.)

	Accuracy Level								
	(+/-) 5%		(+/-) 15%			(+/-) 25%			
Precision									
Level	Ν	Р	K	Ν	Р	Κ	Ν	Ρ	K
	(number of cores)								
90%	227	298	59	25	34	7	10	12	3
80%	137	181	36	18	31	5	6	8	2
70%	90	117	24	10	14	2	4	5	2
Dr. W.C. Danke, NDSU Soil Scientist									

Improving Soil Sampling Consistency Keys to Successful Soil Sampling <u>Strip-Till Sampling</u>

Methods to Collect the Cores

- 1. 6" off the side of the strip-till band
- 2. 1 core in the strip-till band and 3 cores between the strip-till bands
- 3. Random

The problem:

If you collect cores <u>between the bands</u>, then more than likely it will result in over-fertilization.

If you collect cores <u>in the bands</u>, then more than likely it will result in under-fertilization.

Improving Soil Sampling Consistency Keys to Successful Soil Sampling <u>Avoid or Sample Separately</u>

Field anomalies

- A. Saline or sodic areas of a field
- B. Headlands or field margins
- C. Old farmsteads
- D. Old feedlots
- E. Drowned out areas
- F. Combining smaller fields into one field
- G. Eroded knolls or exposed subsoil
- H. Drainage ditches

Areas to Sample Separately

STN = 120 lb/a (0-24")

STN = 45 *lb/a* (0-24")

Areas to Sample Separately or Avoid

Higher nitrogen
Higher sulfur
Higher phosphorus
Higher potassium

STN = 28 lb/a STS = 20 lb/a Salts = 0.4 mmhos

STN = 441 lb/a STS > 160 lb/a Salts = 3.8 mmhos

Improving Soil Sampling Consistency Keys to Successful Soil Sampling <u>Saline Soils</u>

- High concentration of dissolved salts
 - Calcium sulfate (gypsum)
 - Magnesium sulfate (Epson salts)
 - Sodium sulfate
 - Calcium Chloride
 - Magnesium Chloride
 - Sodium Chloride

Tillage:

Major impact on soil test variability.

<u>Conventional vs Conservation Tillage</u> Conventional tillage = less variability No-till/Strip-till = more variability

> **Stubble field vs Tilled Field** Tilled field = more variability Stubble field = less variability

Improving Soil Sampling Consistency Keys to Successful Soil Sampling <u>Tillage Affects</u>

Early vs Late sample comparison.

Early sampled in May on fall-chisel plow prior to spring tillage vs Late stubble

Improving Soil Sampling Consistency Keys to Successful Soil Sampling <u>Tillage Affects</u>

Early vs Late sample comparison.

Early sampled in May on fall-chisel plow prior to spring tillage vs Late stubble

Improving Soil Sampling Consistency Keys to Successful Soil Sampling Tillage Affects

Early vs Late sample comparison.

Early sampled in May on fall-chisel plow prior to spring tillage vs Late stubble

Tillage:

Major impact on soil test variability.

Phosphorus: Affects of tillage on soil test variability.				
	Tillage			
	No-till	Min-till	Conv. Till	
Sites	26	17	17	
Variability	41%	26%	16%	
Dr R O Miller CS				

Potassium, pH and OM:

Much less variation than phosphorus.

R. O. Miller, 2010

With decreased tillage, increased variation both vertically and horizontal. Accuracy improves with increased sampling

intensity.

Depth and Stratification:

3 inch increments 0-3", 3-6", 6-9" & 9-12"

Sample Info

- 1) Sampled July 2, 2013
- 2) Unfertilized soybean field
- 3) 2 sample points
- 4) ~ 300 yards apart
- 5) Corn/soybean rotation
- 6) Conventional tillage
- 7) ~ 5" of rainfall since May 20

Depth and Stratification:

Depth and Stratification:

Major impact on soil test variability.

10.000									
		Nitr	ogen	Sulfur					
		Sample 1	Sample 2	Sample 1	Sample 2				
0–3" -		8	10	3	4				
3–6" -	{	8	8	3	3				
6–9" -		8	8	3	3				
-12" -	{	7	9	2	5				

9

Field size too large:

Grid – Zone Comparisons

- Grid:
 - 0-6" (topsoil) sample
 - Best for manure mgmt. and lime
 - Easy system to implement
 - More intensive sampling than zone
 - P,K,pH,OM,Zn,S,CEC
 - Corn/Soybean rotation

Zone:

- 0-6" + 6-24" sample
- Change yield goal per zone
- Main nutrient: Nitrogen
- <u>Secondary nutrients</u>: P,K....
- Poor on manure mgmt. and lime
- Use remote sensing, Veris, topography, yield maps, others...

3 Zone Map (NIR)

Improving Soil Sampling Consistency Keys to Successful Soil Sampling <u>Conclusions</u>

The **largest source of inconsistency** in soil testing comes from the actual soil sample collection process.

- A. Not enough cores
- B. Field Size: Field/Zone/Grid too large in size
- C. Depth consistency Too deep or too shallow
- D. Tillage vs standing stubble conditions
- E. Sampling after manure or fertilizer application
- F. Contaminated bucket or soil bag
- G. Field anomalies
- H. Strip-Till

Wintex1000

KUBOTA DIESEL 4x4

Thank you!!! Have a Great 2014

LABORATORIES