

Attaining Higher Corn Yields: Tools and Approaches

T. Scott Murrell Northcentral Director, IPNI

Attaining higher corn yields

- High yielding farmers typically experiment with different management practices to determine what works best on their farm
 - Hybrid test areas
 - Comparison of "current" vs. "improved" management systems
 - Fertility trials
- Getting significantly higher yields takes:
 - Attention to detail
 - Patience
 - Determination
 - Time

Outline

- Current trends in corn grain yield
- Tools
 - Hybrid Maize crop model
 - On-farm research resources
- Thoughts on things to try
 - Fertility trials
 - Comparing management systems

Current trends in corn yields

North Dakota crop statistics: Average corn grain yield

North Dakota crop statistics: Average corn silage yield

İPNI

North Dakota crop statistics: Corn acres harvested

USDA-NASS. 2012. Quick Stats. Available online at quickstats.nass.usda.gov

South Dakota crop statistics: Average corn grain yield

South Dakota crop statistics: Average corn silage yield

South Dakota crop statistics: Corn acres harvested

Minnesota crop statistics: Average corn grain yield

Minnesota crop statistics: Average corn silage yield

Minnesota crop statistics: Corn acres harvested

Tools: *Hybrid Maize* crop model

Simulating potential yield

Addressing questions from farmers

- In the future, my operation will need corn yields to increase by X bu/acre to remain profitable.
- Is this realistic?
- How close am I to what is truly possible (what is the gap)?
- What things are affecting my ability to reach higher yields? Are they things I can control?

Yield goal vs. potential yield

- Farmers want to know how close their yields are to what is possible
- Potential yield:
 - "...the maximum yield that could be reached by a crop in given environments" (Evans and Fischer. 1999. Crop Sci. 39:1544)
 - Estimated through crop growth models
- Yield goal:
 - Average of historical yields + ____%
 - "What has been done plus a little more"
 - Estimates for the coming season are used to determine "maintenance rates"

Estimating potential yield

Hybrid-Maize plant growth simulation software

	Visitor	Prospective Student	Current Student	Faculty & Staff	Business, Industry & Government	Search:	UNL Web	\$ GO
	UNIVE	RSITY OF NEBR	ASKA-LINCO	UNL Quick Links 🗘 🚱				
5		ybrid-Maize - Maize Gr		cal/people/weather/	'cam ∓			

Department of Agronomy & Horticulture Hybrid-Maize: A Simulation Model for Maize Growth and Yield

Navigation

Hybrid-Maize

Overview

About Hybrid-Maize

What's n	ew in Hybrid-Maize
version 2	2006, Update of
Weather	aid program, Features of
Hybrid-M	laize, How to run a
simulatio	on, Frequently Ask
Question	s. more

Purchase Hybrid-Maize Software

WeatherAid: a utility to manages weather data

Maize-N

Overview

Purchase Maize-N Software

What does the Hybrid-Maize model do?

Hybrid-Maize is a computer program that simulates the growth of a corn crop (*Zea mays* L.) under non-limiting or water-limited (rainfed or irrigated) conditions based on daily weather data. Specifically, it allows the user to:

- Assess the overall site yield potential and its variability based on historical weather data;
- Evaluate changes in attainable yield using different combinations of planting date, hybrid maturity, and plant density;
- Explore options for optimal irrigation management;
- Conduct in-season simulations to evaluate actual growth up to the current date based on real-time weather data, and to forecast final yield scenarios based on historical weather data for the remainder of the growing season.

Hybrid-Maize does NOT allow assessment of different options for nutrient management nor does it account for yield losses due to weeds, insects, diseases, lodging, and other stresses.

Hybrid-Maize has been evaluated primarily in rainfed and irrigated maize systems of the US Corn Belt. Caution should be exercised when applying this model to other environments as this may require changes in some of the default model parameters.

As with all simulation models, **Hybrid-Maize** still represents a simplification of the 'real-world' system and, as such, model predictions may differ from actual outcomes. Therefore, the results of model simulations should be considered approximations and not taken as fact.

http://hybridmaize.unl.edu

ettings Save Results Print Utilities Help		
s 🖘 💾 📶 📥 🗇 🗯 📖 🗊 🔂 🔛		Hybrid-Maize Nebraska
Input Results Chart Growth Weather	Water	Lincoln
General Input	Water	Nitrogen
Weather fileFargoND1998_2008-1. wthAvailable data1/1/1998 - 12/31/2008	 Optimal Estimate irrigation water requirement C Deipted (Irrigeted 	Optimal 🔽 Last season residues incorporation Type 💽
C Current season prediction	Assume no water stress in prediction phase	Quantity (Mg/ha)
 C Long-term runs C Single year C 2008 ▼ 	Irrigation schedule Month Day Amount (inch)	Date 🔽 🔽
with long-term runs Start from © Emergence © Planting		Soil Nmin at planting (Ib/acre)
Seed depth (inch) 1.6 Seed brand Generic Maturity	Reset entries	Fertilizer N (Ib N/acre)
GDD50F 1900 Date (m/d) Relative maturity (days)	Soil Max rooting depth (inch)	40
Optional: Date of silking (m/d) GDD50F to silking * 1042 * Generic estim	Texture Initial moisture (1 ft) Clay Violation (75% F	e status Bulk density FC) I.3 (g/cm3)
Population (x1000/acre) 30.0	Sub-soil Clay 🗾 Moist (75% F	=C) •

Example output from a 10-yr simulation

Across-run Comparison

Primary output generated by Hybrid-Maize

- Maize yields can be simulated for 1 year or many years
- Forecasted yields can be generated for a current season, using year-todate weather data combined with long-term weather data
 - Requires a minimum of 10 years of historical weather data
 - Summarized by day
 - No missing data

Run	Gr. Y
1998	143.0
1999	162.0
2000	164.8
2001	169.9
2002	159.5
2003	68.7
2004	124.2
2005	173.3
2006	125.0
2007	129.7
2008	110.8

Tools: *Hybrid Maize* crop model

Getting weather data

Process for determining potential yield

Required weather data

- Daily data for the following:
 - Minimum air temperature
 - Maximum air temperature
 - Total precipitation
 - Average wind speed
 - Average relative humidity
- Weather data resources:
 - NASA (usually complete through 2008 free)
 http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov
 - Midwestern Regional Climate Center <u>http://mrcc.isws.illinois.edu</u>
 - High Plains Regional Climate Center Automated Weather Data Network (AWDN: \$10/year/station) <u>http://www.hprcc.unl.edu/data/</u>

Mesonets: Mesoscale networks

- Automated, environmental monitoring stations
- Most capture data needed by Hybrid Maize

Weather Aid tool in Hybrid Maize

- Readily retrieves data from NASA
- Checks for errors and allows you to correct them
- Estimates evapotranspiration
- Formats weather data into the format needed by Hybrid Maize

Utilit	ties	Help						
	We	WeatherAid						
	Batch runs Ctrl+B							
	Cal	culator						

-∜∏ Exit	⇐ ➡ Back Forward	Stop Refre	Capture data			
Address	http://earth-www	w.larc.nasa.	.gov/cgi-bin/cgiwrap,	'solar/agro.cgi?en	mail=agroclim@larc.nasa.gov	
Links 🚡	🖥 Google 🔞 HP	RCC Online	NCDC NASA	🕉 UNL Agronomy 🛛 (🚯 Hybrid-Maize	

NASA Climatology Resource for Agroclimatology **Daily Averaged Data (Evaluation Version)**

Please Note: Data sets preceding January 1, 2008 are derived from different sources of data than those on or after January 1, 2008. It is not recommended to use time series data to assess trends across that date.

	Enter BOTH latitude and longitude either in decimal degrees or degrees and minutes separated by a "_".						
Example:	Latitude 33.5 Longitude -80.75	OR	Latitude 33_30 Longitude -80_45				
Latitude?	South: -90 to	0	North: 0 to 90				
Longitude?	West: -180 to	o 0	East: 0 to 180				
Start Date: Jan 💌 1 💌 2012 💌 SEE AVAILABLE DATES							
End Date: Dec - 31 - 2012 - BESIDE EACH PARAMETER							

Choose between two output formats (1 OR 2):

1) Download solar and meteorological parameters in ICASA ASCII column format? Yes

2) Download single or multiple solar radiation and meteorological parameters in ASCII column format:

Note: Precipitation usually lags in availability. See available dates when choosing the parameters in the list to the right.

Top-of-atmosphere Insolation (Jul 1983-near present) Insolation on Horizontal Surface (Jul 1983-near present) Downward Longwave Radiative Flux (Jul 1983-near present) Average Air Temperature at 2 m (Jan 1983-near present) Ξ Minimum Air Temperature at 2 m (Jan 1983-near present) Maximum Air Temperature at 2 m (Jan 1983-near present) Relative Humidity at 2 m (Jan 1983-near present) Dew Point at 2 m (Jan 1983-near present) Precipitation (Jan 1997-Aug 2009)

 $\overline{\mathbf{v}}$

Submit Reset This form is "Reset" if the input is out of range.

<u>7</u> % v	VeatherA	id														
File	Contro	ol Hel	р													
	Open	input	file	FargoNI	D1998_200	18-1.wth]						Weathe	rAid Exp	lorer 🌍
l í	Step 1	: Spe	cify in	put data-												
			Data i	template 🛛	Hybrid-Mai	ze	-									
		4	Refere 46.95 Year	ence ET est (Lat.) DOY	timated by F Solar	FAO Penm T-max	ian-Monti T-min	eith method RelHum	.! SRAD Precip	daily I ET	nsolation	Incident On	A Horizo	ntal Surfa	ce (MJ/m^	2/day 🔺
	Rows t data s	oefore start	1998 1998 1998 1998 1998 1998 1998	1 2 3 4 5 6	MJ/m2 5.10 4.10 5.50 5.80 4.20 7.20	oC -1.4 -2.6 -19.5 -14.6 -8.3 -11.4	oC -7.2 -16.8 -26.2 -23.1 -15.2 -14.2	% 94 97 68 72 78 78	mm 0.1 4.9 0.2 0.0 0.0 0.0	mm 0.1 0.2 0.2 0.2 0.2 0.2						
	С	olumn	1	2	3	4	5	6	7	8	9	10	11	12		Spacer
	Va	riable	Year	▼ DOY	▼ Solar ▼	- T-max	▼ T-min	RelHun	 Precip 	▼ ET	_ Ignor	re 🔽 Ignore	Jgnore	e 🛨 Ignore	• -	▲ ▶
		Unit		-	MJ/m2 ≤	- OC	▼]0C	• %	_ mm	▼ mm	-	_	_	_	_	Reset
	Step 2	: Sele	ct tas	k												
	1.0	onvert	to Hy	/brid-Maiz	e format			•		Step 3	: Proce	SS				
	10.00					and a second										
			Conve	rt and ream	ange for Hy	ond-Maiz	ze use		 0	utput						
		Hybr	id-Ma	lize requir	res daily v	weather	data of:			Referen 46.95 (ice ET es (Lat.)	timated by F	FAO Penm	ian-Monte	ith method	.! SRAD
		So	olar rac	liation						1000	1	MJ/m2			%	mm
		М	aximun	n temperatu	re (T-max)					1998	2	5.10 4.10	-2.6	-16.8	94 97	4.9
	Minimum temperature (T-min)							1998	3 4	5.80	-19.5	-26.2	68 72	0.2		
Relative humidity of the air								1998	5	4.20 7.20	-8.3 -11.4	-15.2	78 78	0.0		
		Pr	ecipita	tion						1998	7 8	6.20 3.80	-7.0 -6.5	-13.6 -8.6	85 84	0.0 0.0
		Re	eferenc	e evaportra:	anspiration	(ET)				1998	9	5.40	-9.8	-24.5	87	0.0 👻
										•	_					•

Load back to input panel

Load in Excel

Update HM weather file

Save

Tools: *Hybrid Maize* crop model

Interpreting the yield gap

Defining the gap to target

"...achieving consistent cereal yields that exceed 70% of the yield potential barrier depends on sophisticated management of soil and water resources and applied inputs. A precision agriculture approach is required to insure that the requisite resources for crop growth are available and crop protection needs are met without deficiency or excess at each point in time during the growing season."

-- Prof. Ken Cassman

Later presentations quoted 80-85% as the target to attain consistently

Cassman, K.G. 1999. Proc. Natl. Acad. Sci. 96:5952-5959.

Calculating the gap

relative yield
$$(Y_R) = \begin{pmatrix} actual yield \\ \hline potential yield \end{pmatrix} X 100\%$$

Interpretation categories for relative yield:

Relative yield (Y_R)	Interpretation
Y _R < 80	Yield gap is too large
$80 \le Y_{\rm R} < 100$	Yield gap is within the target range
$100 \le Y_{\rm R}$	No yield gap exists

Comparing average actual yield to the potential yield under current practices

Management practices that can be examined by *Hybrid-Maize*

- Site data
 - Soil texture of:
 - Upper 12 in. of soil profile
 - Subsoil
 - Bulk density of upper 12 in. of soil profile
- Management practices
 - Planting or emergence date
 - And planting depth, if only the planting date is known
 - Seed brand
 - Total growing degree days of hybrid
 - Final population
 - Initial moisture status of upper 12 in. of soil
 - Initial moisture status of subsoil

Yield gap for improved practices

S/C

S/C/C

S/C/C/C

Summary

- Farmers are asking, "What yields could I be getting?"
- To answer this question, *Hybrid Maize* can be used to estimate potential yield
 - Actual yields can be compared to potential yields under the management practices used in a given season
 - Hybrid Maize can be used to run different scenarios to see what changes in management practices might improve yields
- Field testing is then needed to determine the actual effects of changing management practices

Resources for on-farm research:

Management comparisons

The goals of management comparisons

- Be able to determine if there were differences among treatments
 - Analysis of variance
- Be able to tell which treatments stood out as being better or worse
 - Compare the averages of the treatments (mean comparisons)

"Is that better or worse?"

Blocking and randomization

ANalysis Of VAriance (ANOVA)

- Concept:
 - The variability between treatments in the experiment should be greater than the background variability at the site
 - This analysis does not tell you which treatments were different from each other
 - The Least Significant Difference (LSD) is a second analysis that does tell you which particular treatments were different from one another

What is the least significant difference?

• The minimum difference that needs to exist between treatments for them to be considered statistically different

Treatment	Average (mean)			
Improved management	200 bu/A	а		
Current management	175 bu/A	b		
LSD	20 bu/A			

Online tool for ANOVA and LSD

http://pnwsteep.wsu.edu/agstatsweb/index.html

http://pnwsteep.wsu.edu/agstatsweb/index.html

O Completely Randomized Design (CRD) 💿 Randomized Complete Block Design (RCBD)

Level of Significance

○ 1% ⊙ 5% ○ 10% ○ 20%

Save File

	Replication/Block 1	Replication/Block 2	Replication/Block 3	Replication/Block 4	Treatment Mean
Treatment 1	67	50	23	45	46
Treatment 2	90	80	45	68	71
Replication/Block Mea	79	65	34	57	59

Analyze

New Analysis Logout

Source	Degree of Freedom	Sum Square	Mean Square	Observed F	P value	
Total	7	3,314	473			
Treatments	1	1,201	1,201	176	0.09%	Significant
Blocks	3	2,093	698	102	0.16%	Significant
Error	3	21	7			
Required F	10					
Correction Factor	27,378					
Standard Deviation	3					
Coeff. of Variation	4%					

LSD	6	
Treatment Name	Mean	
Treatment 1	46	λ
Treatment 2	71	В

Resources for on-farm research:

Rate studies

Rate studies

Layout

- Use at least 4 rates, 5 to 6 are preferable
- Keep a constant increment between rates (0, 50, 100, 150, 200, 250)
- Try to keep strips at least 250 ft. long
- Keep all plots the same length
- Randomize order of rates
- Replicate at least 2 times

Excel "out of the box"

Excel "out of the box"

Calculating: *Rate for maximum yield*

$y = -0.0022x^2 + 0.8311x + 138.93$ 1) Number in front of the x: 0.8311 **2)** Number in front of the x^2 : 2*0.0022change the sign (-to +)and multiply by 2 3) Divide 1) by 2): 189 lb/acre

Calculating: Economically optimum rate

Calculate ratio of nutrient price (\$/lb of actual) to crop price:

Crop Nutrient Response Tool

http://nane.ipni.net/articles/NANE0001-EN

Crop Nutrient Response Tool (CNRT) v4.2							R ² -weighted Mean	Quadratic (Q)	Quadratic- Plateau (QP)	Mitscherlich (M)	Linear-Plateau (LP)	Spherical (SP)
Step 1: Enter rate and yield data.						A:		98	119	179	125	122
Step 2: Click the Fit button.		Fertilizer	Crop Yield.	F	it	B:		0.88	0.55	-68	0.33	54
Step 3: Adjust crop and fertilizer p	prices.	rate, lb/A	bu/A			C:		-0.0024	-0.0013	-0.014	176	196
Step 4: Click to append information to summary.		30	135	R ²		R ² :		70%	81%	80%	82%	82%
Site Details		120	160	MERN (lb/A)		/A):	157	162	161	144	154	164
Site		180	185		Yield @ MERN (bi	u/A)	174	180	173	170	176	174
Year		250	185	Partial Fa	actor Productivity (P	FP)	1.11	1.11	1.08	1.18	1.15	1.06
Town		120	170	Agro	nomic Efficiency (A	E _N)	0.37	0.50	0.34	0.41	0.33	0.32
County		180	170	P	artial N Balance (PN	NB):	78%	78%	75%	83%	80%	74%
State or province		250	165	Re	covery Efficiency (R	E _N)	39%	53%	35%	43%	35%	33%
Latitude					Delta Yield (br	u/A)	59	82	54	60	51	52
Longitude					Relative Yield	(%)	66%	55%	69%	65%	71%	70%
Altitude												
Soil texture class				200								
Preceding crop				200								
Expected Yield (bu/A)				190					•		•	
Timing and placement				100								
Tillage				400			_		1 ▼		•	
Site degree-days				160	1			•				
Crop species												
Cultivar				140	1							
PSNT (ppm)				~								
Manure N (lb/A)				≤ 120								
Planting date				5								
Harvest date				<u> </u>	-							
Crop (\$/bu)	4.50			2								
Fertilizer (\$/lb)	0.55			l 🛒 80	-							
Price ratio (f/c)	0.122											
Crop N content (lb/bu)	0.70			60	-							
N harvest index	0.67											
Fertilizer source				40	-							
				20								
				20								
				0								
				U					4 - 0			
Append site information to			0	50	10	00	150	200	250	300		
summary			Fertilizer Applied (Ib/A)									

Resources for on-farm research:

Measuring more than yield

Nutrient use efficiency: Partial factor productivity

Things we can measure

Grain yield of a fertilized crop

Grain yield of an unfertilized crop

Fertilizer application rate

Nutrient content of the grain

Partial factor productivity of nitrogen for corn grain: Scale: Field, north central Indiana

Partial Factor Productivity of nitrogen for corn grain: Scale: Within-field, north central Indiana

Nutrient use efficiency: Partial nutrient balance

Things we can measure

Grain yield of a fertilized crop

Grain yield of an unfertilized crop

Fertilizer application rate

Nutrient content of the grain

Nutrient use efficiency as measured by: *Partial nutrient balance*

Guidelines

- Partial nutrient balance values:
 - approx. 1.0
 removal = application
 (some sense of sustainability)
 - less than 1.0 removal is less than application (soil nutrient levels are increasing)
 - greater than 1.0
 removal is more than application
 (soil nutrient levels are decreasing)

