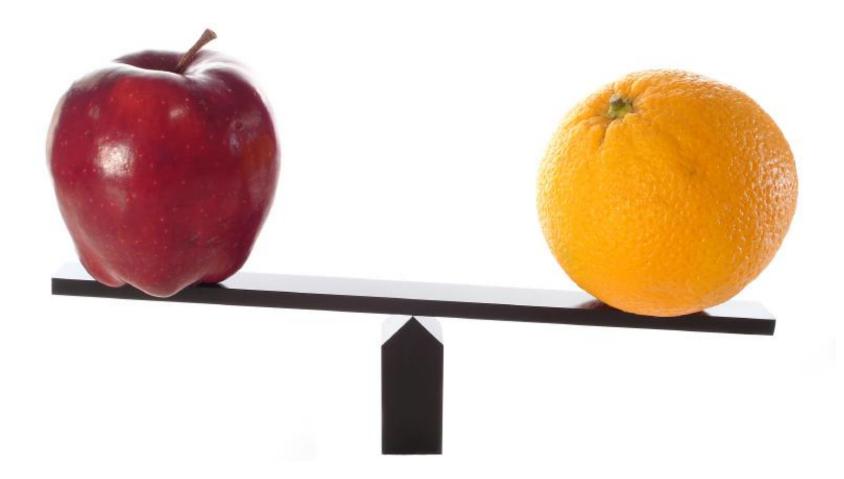
Getting to the Bottom of Shallow Tillage

Jodi DeJong-Hughes Extension Educator Soils and Crops 320-235-0726 ext 2006 dejon003@umn.edu

Vertical vs. Horizontal Tillage

Horizontal tillage

- Chisel
- Cultivator
- Strip tiller
- Ripper

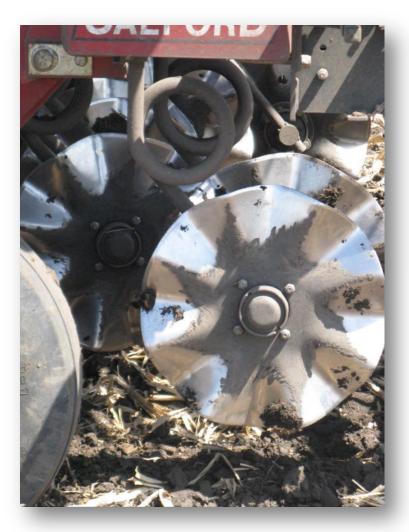

Vertical tillage

- Super coulter
- Straight shank

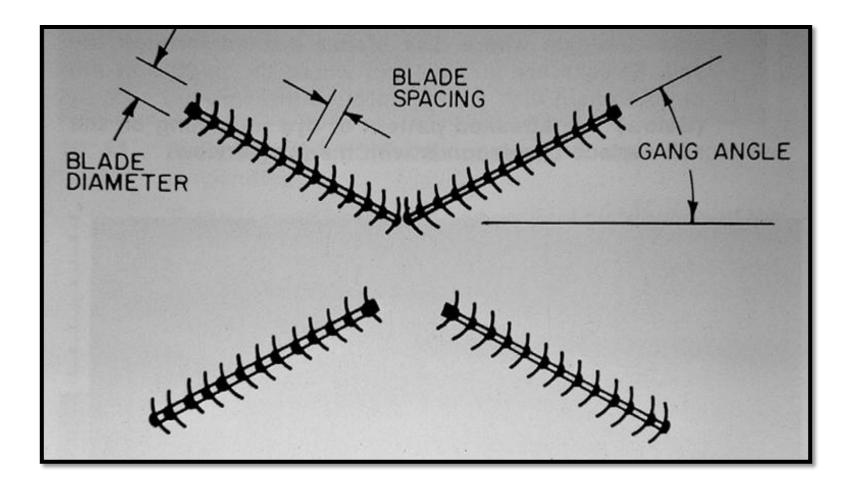
swiderskiequipment.com, clarkagequipment.com

Differences in Equipment

fxtimes.com



Purpose ~ mixing, depth and aggressiveness


Individual vs. Gang Mounted

Purpose ~ down pressure and rocks

Straight vs. pitched gangs

Purpose ~ mixing, aggressiveness and area covered

Harrows, Rolling Baskets,

Purpose ~ finishing and smoothing

beavervalleysupply.com

Vertical Till

Classified as mulch till (shallow, full field tillage)

Benefits of Vertical Tillage:

Can get into wet fields

Chops and sizes residue

Leaves some residue intact

UNIVERSITY OF MINNESOTA | EXTENSION Driven to Discover^{ast}

Primary and secondary tillage

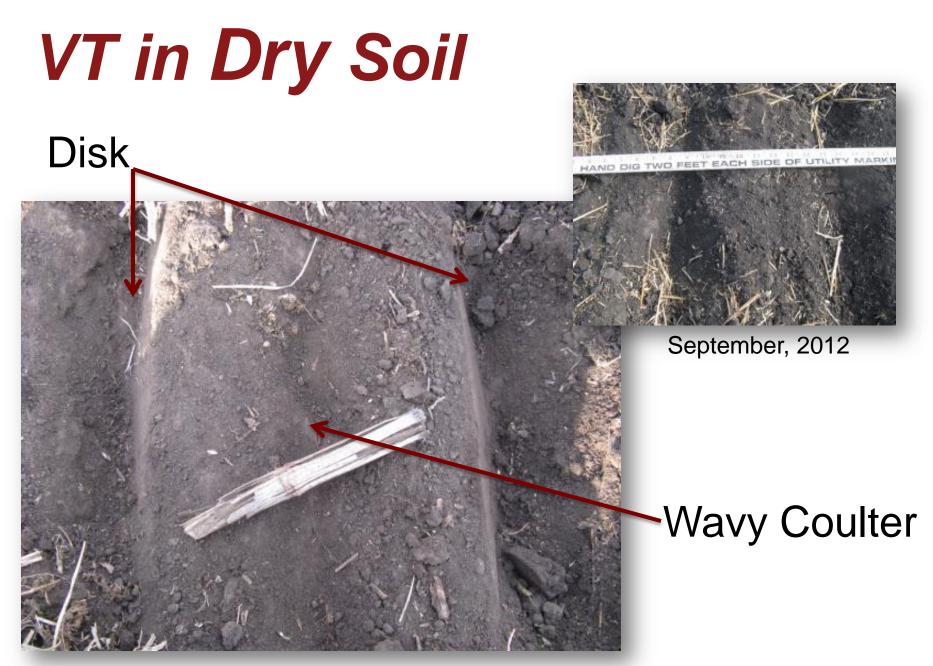
SALFORD

Speed - 7 to 10 mph

Vertical Tillage Requirements:

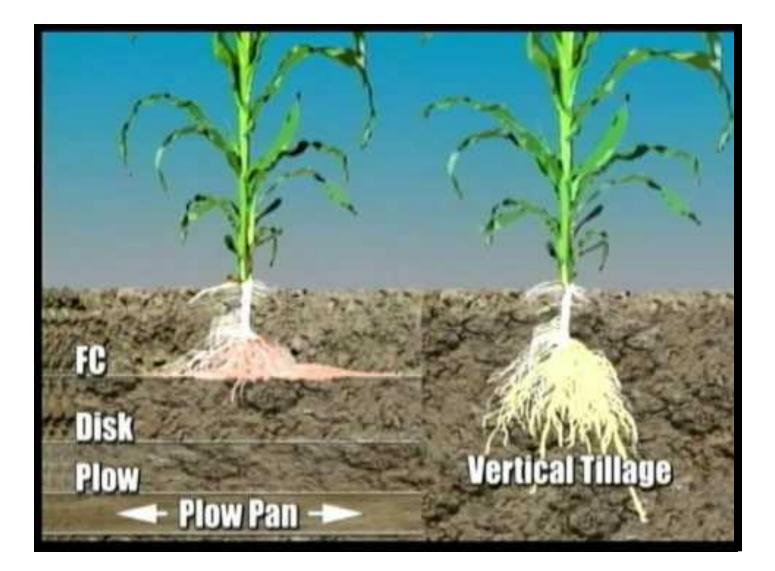
10 hp per foot

More for hills, dry soil, ...



Challenges for VT ~ Incorporation

Fertilizer incorporation


Weed pressure

ST

* 1 inch of rain in 3 months, late July to October, 2011

Breaking up Compaction?

verticaltillage.com

Vertical Tillage Management

Get up to Speed!

- Too slow won't get enough mixing
 - Too fast float up out of ground

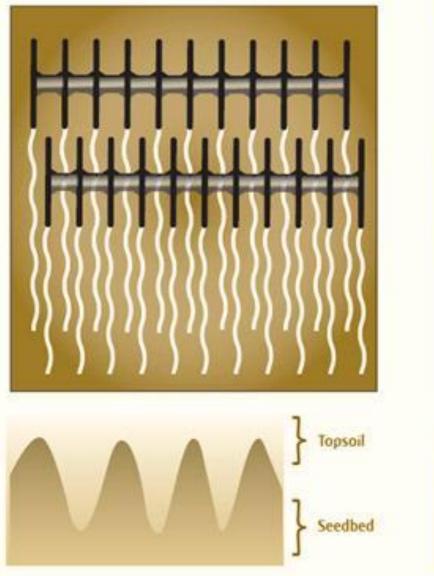
In Line VT?

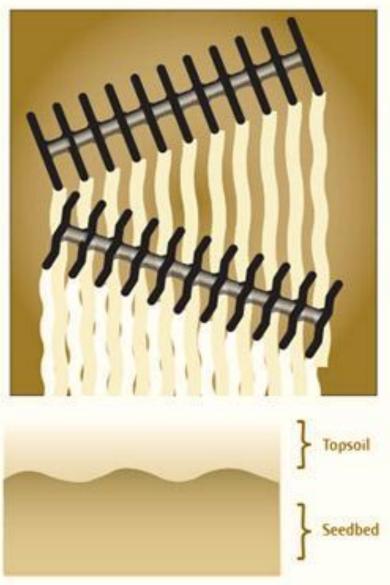
Field Cultivator

3-4" Depth

Even mixing of soil

Good fertilizer and weed incorporation


Challenges: 30% residue remaining


VT

Smearing in a Wet Soil

Shallow Disk

Deere.com

Levels and firms the seedbed

Great at sizing residue and clods

00 000

STOLE .

deere.com

Buries more residue than other 2° tillage tools

Challenges for a Disk

- Loss of soil structure
- More compaction
- Less residue

Disks in Dry Soil

Soil Finisher

Even mixing of soil and residue

Chops and incorporates a lot of residue

GUPPHEN STATE ONE CALL SAYS "CALL BEFORE YOU DIG"

Benefits and Challenges of 2 Systems

- ½ disk
- ½ field cultivator

3 Year Tillage Research

- Fall of 2009
- Carlisle and Clarkfield, MN
- Looking at varying residue levels

Soybean Data - Clarkfield

3 Year Soybean Average

Tillage Rotation	Residue (% after planting)	Yield (bu/ac)	Cost (\$/ac)
Strip Till	64	50.8	\$14.60
Salford 2 Passes	49	51.3	\$19.72
Salford 2 Passes (prev. tillage chisel plow)	50	49.5	\$19.72
Chisel Plow + FC (prev. tillage disk rip)	50	49.6	\$20.48
LSD (0.10)	*	NS	

Corn Data - Clarkfield

3 Year Corn Average

Tillage Rotation	Residue (% after planting)	Yield (bu/ac)	Cost (\$/ac)
Strip Till	43	153.8	\$14.60
Salford 2 Passes	26	156.0	\$19.72
Chisel Plow + FC (prev. tillage Salford)	29	151.5	\$20.48
Disk Rip + FC (prev. tillage chisel plow)	32	153.3	\$28.15
LSD (0.10)	*	NS	

Corn Data - Carlisle

	2 Year Average	
	Residue	Yield
Tillage Rotation	(%)	(bu/ac)
Field Cultivation (prev. tillage NT)	37.3	157.2
Strip Till (prev. tillage NT)	62.3	163.7
Salford at 3" Depth (prev. tillage VT)	60.0	145.3
Summers Super Coulter at 1" (prev. tillage VT)	73.7	134.5*

Detriment of <u>Shallow</u> Tillage

Soybean Data - Carlisle

	Residue	Yield
Tillage Rotation	(%)	(bu/ac)
No Till (prev. tillage Field Cultivation)	81.0	57.7
No Till (prev. tillage Strip Till)	78.3	56.9
Salford VT (prev. tillage VT)	70.0	57.8
Summers Super Coulter (prev. tillage VT)	71.0	58.1
LSD (0.10)	7.2	NS

Importance of Good Soil Structure

Soil structure is your #1 defense against future compaction

Create Soil Structure by:

- Build or maintain organic matter
- Maintain >30% residue coverage
- Increase crop rotation
- Add organic inputs (compost, livestock and green manure, cover or companion crops)

Destroy Soil Structure by:

- Tillage (recreational, aggressive)
- Tight crop rotation
- Compaction
- No carbon or residue input (ex. burning)

Kansas State Pilot Study

	Bulk Density		Infiltration	Corn Yield
	0 - 2"	2 - 4"	(mm/hr)	(bu/ac)
Vertical Till	1.13	1.29	21.4	167.1
No-Till	1.21	1.30	44.0	165.9
P Value/T test	0.08	NS	0.04	NS

VT at 2" depth - Case 330 Turbo Till NT field since the 1980's (beautiful soil properties) No density increase below the depth of tillage (2")

Pressley, KSU, 2009

Where to Try Vertical Tillage

- Sizing residue and introducing air
- Wet Spring or Fall

Where to **Try** Vertical Tillage

Decrease residue build-up in reduce till systems

50-60% of corn residue = good on slopes

Where to **Avoid** Vertical Tillage

In very dry soils In long term No-till fields

Questions?