## Are There Changes In N Management On The Horizon?

George Rehm 507-263-9127 rehmx001@umn.edu

## Most Apparent N Shortages -- Summer 2011

- corn following corn
- ▶ fall applied 82-0-0
- poorly to very poorly drained soils

## There Have Been Changes

- weather patterns— more frequent intense storms
- higher yields thus more residue
- added organic matter enhances immobilization of N applied early
- more efficient use of fertilizer N; 1.25 lb.N/bu then, 0.6 lb.N/bu.
- prediction tools
- risk has become a more serious consideration

# Possible Changes In Management Practices

- rate
- time and frequency of application
- use of extenders and additives

#### The Basal Stalk Nitrate Test

- has been evaluated in many fields
- substantial variability in any field
- affected very much by stress
- has some value if you want to look back
- definitely not a predictive tool

# Basal Stalk Nitrate Test--Instinct Use

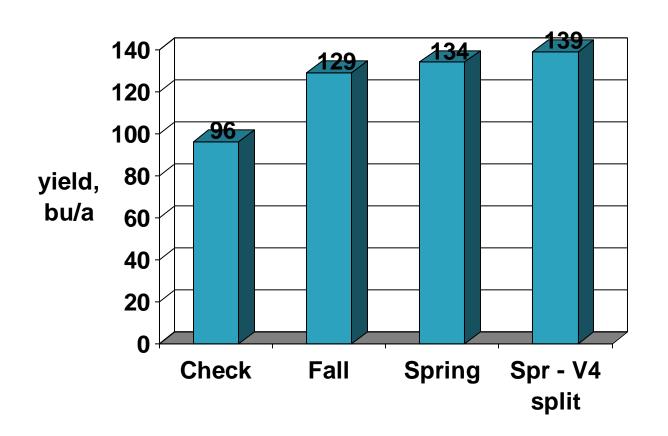
| Basal stalk nitrate-N | Yield       |
|-----------------------|-------------|
| ppm                   | bu./acre    |
| 1963                  | 149         |
| 2402                  | 152         |
|                       | ppm<br>1963 |

#### N Rate and Basal Stalk Nitrate Test

| Total N Applied* | Yield    | Basal Stalk Values |
|------------------|----------|--------------------|
| lb./acre         | bu./acre | ppm                |
| 221              | 173      | 5247               |
| 261              | 182      | 5801               |
| 311              | 187      | 8501               |

<sup>\*120</sup> lb.N/acre from poultry manure, 6 lb.N/acre from 10-34-0 pop-up, 45 lb.N/acre as 28-0-0 preplant; remainder injected as a sidedress treatment

### N Source and Timing -- Corn Yield


| Time of Application | Source    | Yield |  |
|---------------------|-----------|-------|--|
|                     | bu./      | acre  |  |
| late November       | 21-0-0-24 | 168   |  |
| late fall           | 46-0-0    | 157   |  |
| spring preplant     | 46-0-0    | 164   |  |
| late fall + N-Serve | 46-0-0    | 155   |  |
| spring + N–Serve    | 46-0-0    | 167   |  |

Source: Southern Research and Outreach Center

#### At Waseca

- sidedress N produces no reduction if applied at or before V4
- early (before v4) split application reduces risk

# Nitrogen Timing on Corn, SE Farm, 1990 - 2006 (8 yr) Rec. N rate



### Considering Sidedress N

- A serious consideration as yields increase
- Agronomics suggest positive benefits for corn
- Period of greatest uptake is 45 to 80 days after planting for corn
- For spring wheat, period of greatest uptake is 30 to 60 days after planting
- Changes in equipment are needed

## Split N Applications At 25 Sites

- 1 positive yield increase
- 8 sites where yields were decreased
- 16 no yield increase or decrease from a sidedress application

#### Concerns With Late Sidedress

- ▶ 28-0-0 and 46-0-0 need rain to incorporate
- application date does not match time of maximum N uptake
- rain delays application
- best to inject at least 4 inches

#### Foliar N for corn

- Big movement in foliar N application
- Promises of greater availability and can use less pounds
- Sounds good in theory
- In practice has not been shown to consistently work
- In most cases where rates can be cut by using foliar the rates were already too high
- Cannot supply all the N needed
- High rates of N can burn tissues

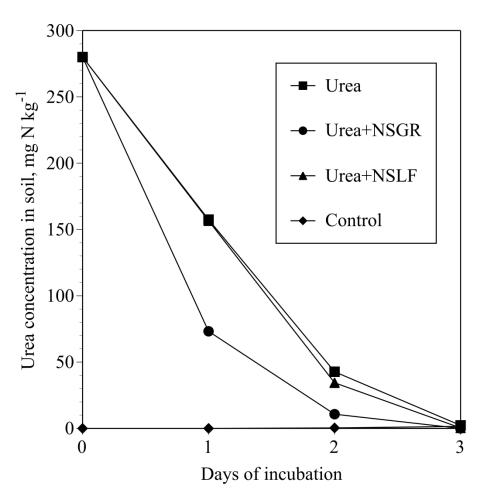
### Minot-Roseglen- McKay. Preplant treatme compared to 1 gal/a Coron flag-leaf application after a preplant treatment, 20

| Treatment               | Yield, bu/a | Protein, % |
|-------------------------|-------------|------------|
| Check                   | 60          | 13.8 a     |
| 90 U                    | 71.8        | 14.9 b     |
| 90 GP 43                | 69.8        | 14.8 b     |
| 90 UAN                  | 68.7        | 14.3 ab    |
| 90 GP 30L               | 71.6        | 14.7 b     |
| 90 U + 1 gal/a<br>CoRon | 69.1        | 15.1 b     |
| LSD 5%                  | NS          | 0.6        |

### Potential For Green Sensing

- highly dependent on algorithim developed
- affected by bare soil
- must plan to sidedress some N probably as 28-0-0
- no substitute for measuring soil nitrate N

### Greenseeker Evaluation


| Site | Texture   | EONR      | Yield    | NDVI rate | NDVI split | NDVI     |
|------|-----------|-----------|----------|-----------|------------|----------|
|      |           | lb.N/acre | bu./acre | Lb.N/acre | bu./acre   | bu./acre |
| H08  | l sand    | 180       | 289      | 90        | 212        | 253      |
| CF08 | loam      | 150       | 222      | 150       | 222        | 205      |
| SW09 | l sand    | 192       | 223      | 120       | 196        | 227      |
| SE09 | silt loam | 148       | 242      | 120       | 235        | 232      |
|      |           |           |          |           |            |          |

## What About Extenders and Additives?

- N-Serve and Instinct; they work; Beneficial where high soil moisture is a concern
- ESN; works as advertised—added cost
- Agrotain; works as advertised; buying time
- Nutrisphere N (NSN)——I doubt it



## Urea concentration in laboratory study with and without Nutrisphere. Goos, 200



#### **Cumulative Ammonia Loss**

|                     | Days After Application |      |      |      |
|---------------------|------------------------|------|------|------|
|                     | 3                      | 7    | 11   | 15   |
| N Source            | % of N Applied         |      |      |      |
| 46-0-0              | 14.5                   | 35.9 | 51.8 | 56.9 |
| 21-0-0-24           | 0.1                    | 0.2  | 0.5  | 0.6  |
| 46-0-0 + 25%<br>NSN | 17.6                   | 42.2 | 57.8 | 62.7 |

Source: Norman and others University of Arkansas





### Thank You For Your Attention

