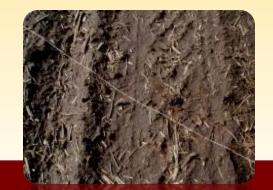
Ruts, Rolling and Tillage (ie Soil and Water Credit!)

Jodi DeJong-Hughes Extension Educator Soils and Crops 507-337-2816 dejon003@umn.edu

Choosing a Tillage System

- Cropping System
 - Rotation, residue removal
- Erosion Potential
 Slope, soil type
- Long Term Productivity
- Others
 - Risk and comfort
 - Current equipment
 - Learning curve




Approximate % Residue Remaining

Moldboard Plow Disk Ripper Chisel - twisted points Field Cultivator w/sweeps Strip Till Vertical Till NH₃ w/closing disks

Field Operation

Strip Till

Chisel Plow+

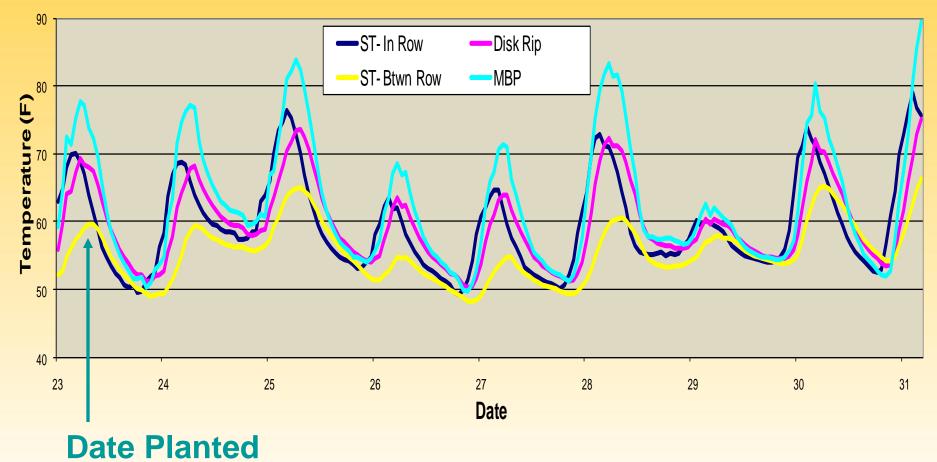
Strip Tillage

- Loosens the soil in the row 7-10" wide while maintaining residue between the rows
- Builds organic matter and soil structure
- Less energy required and less erosion than conventional systems

Strip Till Management

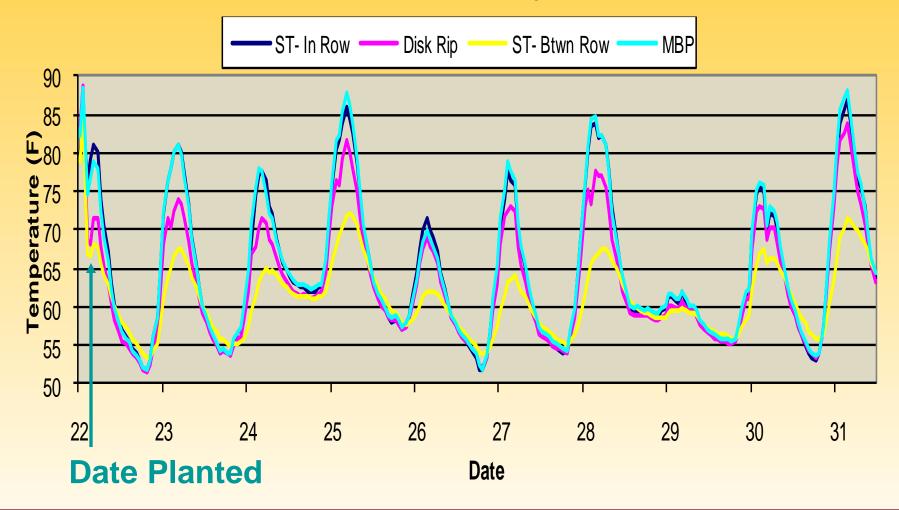
- Tile drainage is beneficial
- Have a ST rep or experienced strip tiller on speed dial
- Planting directly on the berm is essential
- Soil will 'mellow' in 3-4 yrs, but increased water infiltration will be immediate

Committed Sales Rep



Holloway Soil Temps - May 08

30" row spacing



DeJong-Hughes, Lamb, Stahl, Miller

Morris Soil Temps – May 08

30" row spacing

DeJong-Hughes, Lamb, Stahl, Miller

2006-08 Soybean Data (Jeffers, MN)

	2006	2007	2008	Residue %
Treatment		bu/ac		(average)
Chisel Plow	50.3	47.2	43.9	56%
No Till	47.8	46.8	41.6	73%
Strip Till	50.7	48.4	44.6	62%
LSD (0.05)	NS	1.7	NS	4.4

All plots were rotated with ST corn.

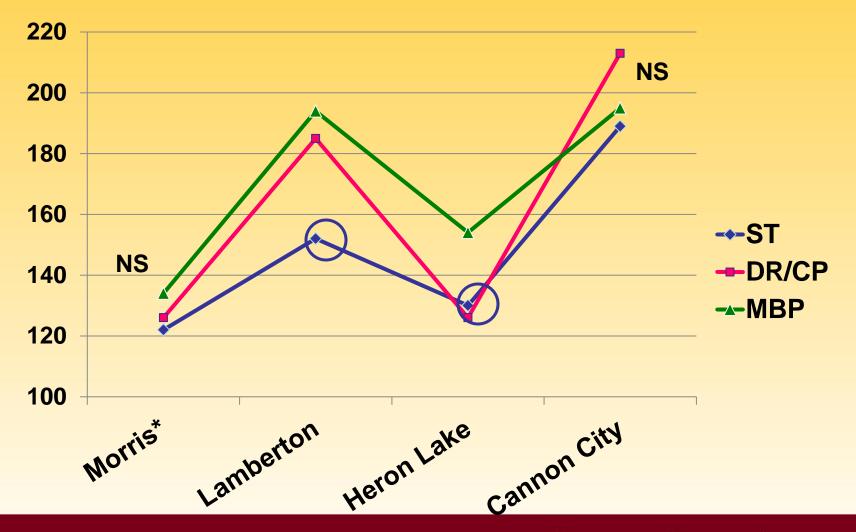
2007 and 2009 Corn Data (Jeffers, MN)

Previous	Yield (I	Yield (bu/ac)			
Treatment	2007	2009	Average		
ST - Corn CP-SB	175.4	182.0	54%		
ST- Corn NT– SB	169.4	176.7	62%		
ST- Corn ST- SB	167.0	176.2	60%		
LSD (0.05)	NS	NS			

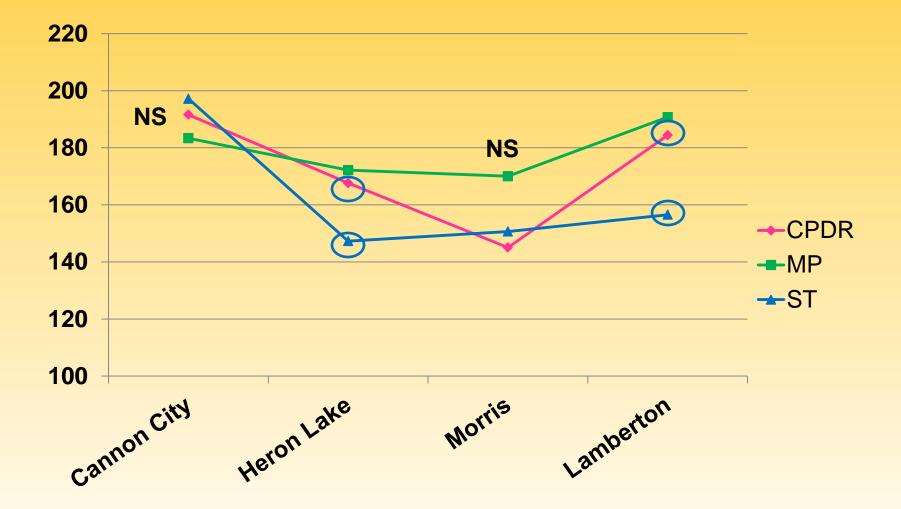
Corn on Corn Tillage Trials

- 6 fields across Southern half of MN
- Started with corn as previous crop
- Three tillage treatments:
 - Moldboard plow
 - Disk rip or Chisel plow
 - Strip till
- Data collected:
 - % residue
 - populations
 - stalk rot, stalk lodging, root lodging
 - yield and moisture

DeJong-Hughes, Stahl, Lamb, Miller


1st Year Corn Yields (bu/ac) 2008

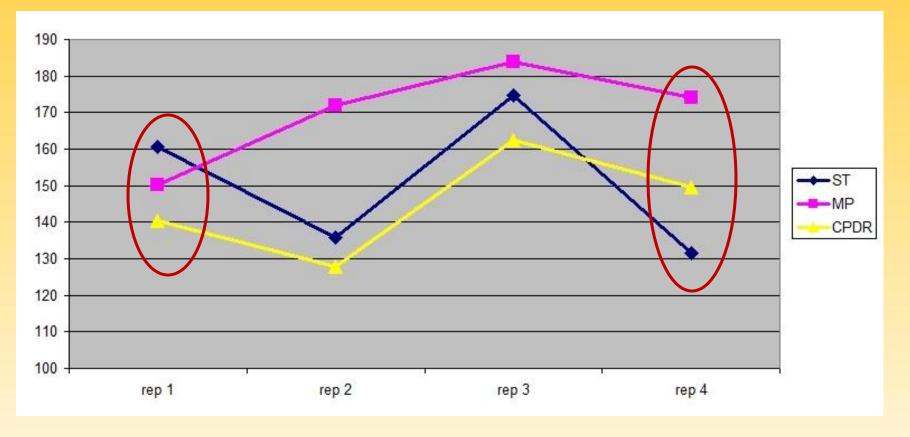
*Holloway had a 2nd light tillage pass in the spring



2nd Year Corn Yields (bu/ac) 2009

3rd Year Corn Yields (bu/ac) 2010

*Morris and Heron Lake had secondary coulter pass

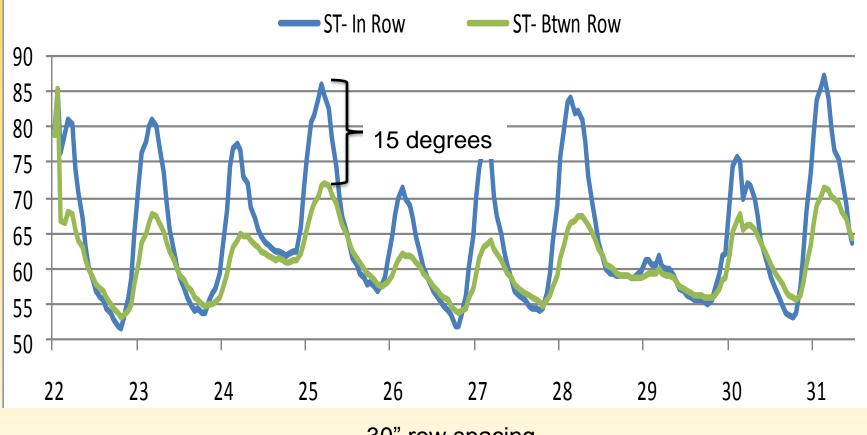

3rd Year Corn Yields (bu/ac) 2010

Tillage	Cannon City	Heron Lake	Morris	Lamberton
CP/DR + FC	191.6	167.6	145.0	184.4
MP + FC	183.4	172.1	170.0	190.7
ST	197.2	147.3	150.7*	156.5*
LSD (.05)	NS	3.5	NS	14.1

* Secondary spring coulter pass

What Happened in Morris?

Change in soils across the research plot

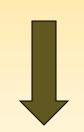


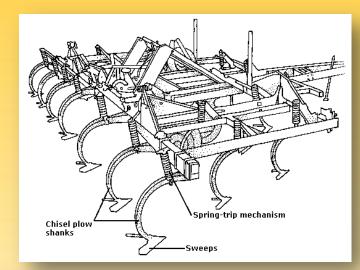
RTK and Yield with ST

	Corn Yield	% from RTK
Treatment	(bu/ac)	
ST with RTK	221 ab	
ST - visual	213 c	- 4
ST - 7" off center	216 bc	- 2.3
No Till	218 ab	- 1.4
Chisel Plow	221 a	

Strip Till C-C Soil Temps In-row vs. Between-the-row

30" row spacing


Strip Till Management


- Tile drainage important
- RTK important (esp. if equipment doesn't line-up)
- Experienced help important
- Look at all mgmt aspects critical
 - Fertility
 - Weed management and shifts
 - Equipment interactions
 - Patience, flexibility, and a Plan B

Horizontal vs. Vertical Tillage

- Horizontal tillage
 - Chisel
 - Cultivator
 - Strip tiller
 - Ripper
- Vertical tillage
 - Super coulter
 - Disk

Vertical Tillage

- Shallow tillage 1-3"
- Drive 7-10 mph
- Incorporates a little residue and sizes residue
- Usually 2 passes in wet spring will get you in the field

Vertical Tillage Mgmt

- Vertical till research is still in its infancy
- Less aggressive implements
 have more weed pressure
- If used in wet soil or as <u>only</u> tillage, it may create a shallow plow pan

Tillage Trials

- Clarkfield (2) and Carlisle (1)
- Corn/Soybean rotation
- Various tillage rotations at each location
- Started Fall 2009 (1 year of data)

Equipment used at Clarkfield

2010 Soybean Data - Clarkfield

	Residue	Population	Yield
Tillage Treatment	(%)	(plants/ac)	(bu/ac)
Fall ST + Spring coulter pass	61	148,800	58.0
Salford RTS, 2x	58	153,700	59.9
Fall Wishek disk + field cultivator	41	143,300	56.7
Fall DMI + field cultivator	54	153,200	57.1
LSD (0.05)	8.9	NS	NS

MinnesotaSoybean

2010 Corn Data - Clarkfield

	Residue	Population	Height	Yield
Tillage Treatment	(%)	(plants/ac)	(inches)	(bu/ac)
Fall ST + coulter pass	36	32,200	10.6	156.6 ab
Salford RTS x 2	30	32,800	11.1	162.9 a
Fall CP + field cultivator	30	31,900	10.7	152.2 b
Fall CP + field cultivator	33	32,000	10.9	155.8 ab
LSD (0.05)	NS	NS	NS	7.1

DeJong-Hughes, J. Coulter

MinnesotaSoybean

Equipment Used at Carlisle

Gates Magnum Coulter at 0 and 7.5 degree pitch

Hiniker ST in Fall and prototype coulter ST in spring

Why 2 passes? No breakdown that winter.

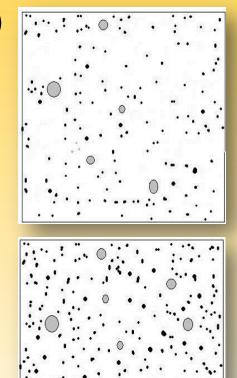
2010 Corn Data - Carlisle

Tillage Treatment	Population (plants/ac)	Height (inches)	Moisture (%)	Corn Yield (bu/ac)
S- field cultivator	33,800	11.2 a	14.6	179.2 a
F- ST S- Coulter pass	33,200	10.7 ab	14.1	178.2 a
S- Gates Magnum Coulter – 0º	31,800	8.4 c	16.1	167.0 b
S- Gates Magnum Coulter – 7.5°	31,500	9.7 b	15.0	170.7 b
LSD (0.05)	NS	1.2	1.1	7.1

High weed pressure in the Gates 0

DeJong-Hughes, J. Coulter

MinnesotaSoybean


Kansas State 2009 Research

- Treatments:

 - Long term no-till
- Applied 6.4" of water/hour
- Infiltration rate:

Pressley et al.

- VT 21.4 mm/hrNT 44.0 mm/hr
- Bd was decreased in top 2"
- Did not incorporate P and K

Vertical Tillage Pilot Study

Physical Properties		VT mean	NT mean	p-value, t-test**
Bulk density (g cm ⁻³)	0-2"	1.13	1.21	0.08
	2-4"	1.29	1.30	0.92
Infiltration (mm hr ⁻¹)*		21.4	44.0	0.04
Yield (bu/ac)		67.1	65.9	NS

This field had beautiful soil properties to begin with - NT since the 1980's. No density increase below the depth of tillage (2")

Pressley, KSU, 2009

KSU 2010 Results: Continuous Irrigated Corn

	Residue (%)	0-2" Bd (g/cm³)	Infiltration (mm/hr)	Yield (bu/ac)
No-till	94.8	1.21	0.49	195
Case	90.5	1.16	0.36	204
Landoll	91.4	1.16	0.18	190
Great Plains	89.3	1.13	0.54	204
LSD (0.05)	3.7	NS	NS	NS

Great Plains: Lower residue because was less anchored and more blew away, which caused lower soil moisture, trend lasted through season (not shown)

KSU 2010 Results: Continuous Corn

	Residue (%)	0-2" BD (g/cm ³)	Infiltration (mm/hr)	Yield (bu/ac)
No-till	60.2	0.96 a	0.8 b	154
Case	40.8	0.78 b	2.1 a	176
Disk	35.6	0.80 b	1.3 ab	154
LSD (0.05)	7.7	0.12	0.95	NS

At this site, tillage was done in fall, resulted in more treatment differences

Where to Try Vertical Tillage

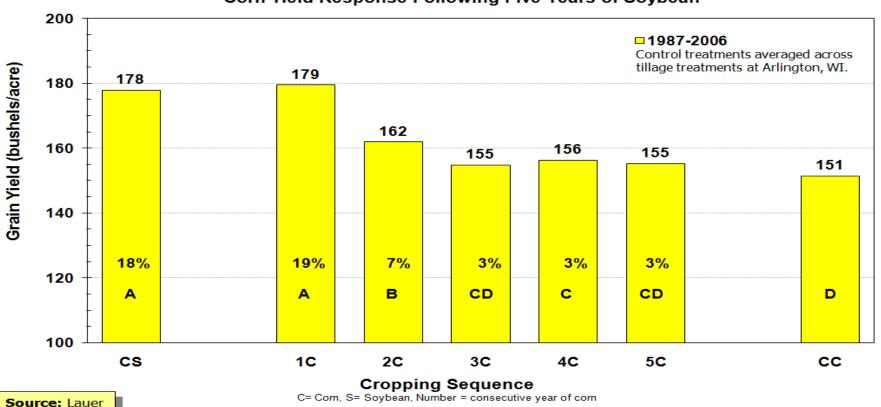
- Good at sizing residue and introducing air to a shallow depth
 - Wet springs
 - When fall tillage was not completed
 - Sands that need to have some tillage
 - Decrease residue build-up
- Leaves 50-60% corn residue = good on slopes and all soil types
- Versatile
- Shallow tillage = works well with rotational tillage

Caution When Using Vertical Till

- In long term NT fields
 - Decreased surface soil structure = decreases water infiltration
- When broadcasting N
 Most machines will not cover N = volitalization
- Using for many years in wet conditions
 May create hard pan

Field Operations and Management							
Practices for Di	Practices for Different Tillage Systems						
Operation	NT	ST	СР	DR	MBP		
Stalk chopping			1	1	1		
Primary tillage		1	1	1	1		
Secondary tillage			1-2	1-2	1-2		
Surface nutrient application	1		1	1	1		
Planting	1	1	1	1	1		
Spraying	2	2	2	2	2		
Harvest	1	1	1	1	1		
Total number of trips	5	5	8-9	8-9	8-9		

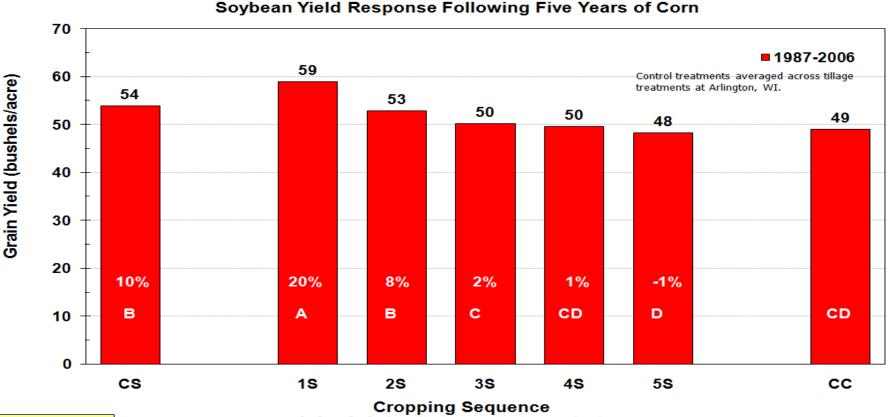
Tillage Economics (\$/acre)



UMN 2008 Custom Rate Survey

UW Rotational Study

The rotation effect lasts two years increasing corn grain yield 10 to 19% for 1C and 0 to 7% for 2C ...


Corn Yield Response Following Five Years of Soybean

UW Rotational Study

Source: Lauer

The rotation effect lasts two years increasing soybean grain yield 10 to 20% for 1S and 8% for 2S ...

C= Corn, S= Soybean, Number = consecutive year of soybean

Choosing a Tillage System

- Cropping System
 - Rotation, residue removal
 - Timeliness of field operations
- Erosion Potential
 - Slope, soil type
- Others
 - Risk
 - Current equipment
 - Comfort
 - Learning curve

<u>Team:</u>

- Jodi DeJong-Hughes, Doug Holen, Phil Glogoza, Russ Severson, Jim Stordahl - UMN Extension
- MN producers, consultants, and roller manufactures
- USDA-ARS, MDA, NRCS and SWCD

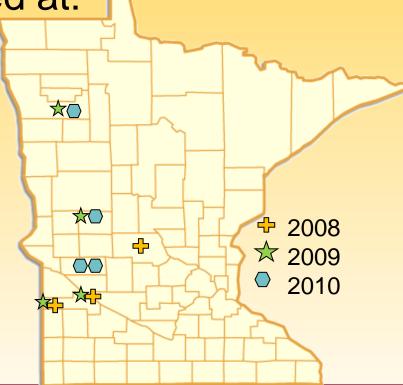
Funding Provided by:

MN Soybean Research & Promotion Council

Perceived Benefits of Rolling Fields

- Able to keep combine head low to the ground without picking up rocks, corn root balls, and soil
 - Harvest lowest pods
 - Decrease dockage for 'dirty' seed beans
 - Less wear and tear on equipment
 - Increase combine speed
 - Ease of harvest

Perceived Benefits of Rolling Fields


- Improved seed bed
- Breakup residue and corn root ball

Materials and Methods

- Three year study (2008-10)
 - 2008 was a pilot year
- Rolling treatments applied at:
 - Pre-plant
 - Post-plant
 - 50% emergence
 - V1 1st trifoliate
 - V3 3rd trifoliate
 - No rolling

Materials and Methods, con't.

- Variables observed:
 - stand, plant injury, yield, seed quality characteristics
 - residue decomposition, water infiltration and runoff (data not shown)
- Randomized complete block design with 3 reps

All Research Sites:

- Field sized equipment
- Plot width varied with roller width
- Minimum plot length 500'
- Harvest with combines and weigh wagons

Flexi-coil packer

Brillion notched roller

Riteway Smooth roller

Ave. Soybean Injury Counts

Treatment	2009	2010
	% I	njury
Pre-plant	5.7	0.3
Post-plant	7.7	0.6
50% Emergence	6.6	1.1
1 st Trifoliate	11.6	4.0
3 rd Trifoliate	16.4	8.2
No rolling	0	0.8
LSD (0.05)	2.2	*

*In 2010, 2 of the 4 sites had significantly greater damage for the V3 treatment.

ENSION

Ave. Soybean Populations

Treatment	2009*	2010*	
	1,000 Plants/acre		
Pre-plant	158	160	
Post-plant	158	160	
50% Emergence	152	142	
1 st Trifoliate	153	151	
3 rd Trifoliate	150	135	
No Rolling	155	154	
* No statistical differences between plant populations by treatment at any locations by year.			

Rolling Damage50% EmergedV1

Ave. Soybean Yield by Year

Treatment	2009*	2010*	
	Yield in bushels/ac		
Pre-plant	46.6	52.1	
Post-plant	46.6	51.2	
50% Emergence	46.1	51.8	
1 st Trifoliate	45.2	51.6	
3 rd Trifoliate	45.3	50.0	
No Rolling	44.7	51.8	
LSD (0.05)	NS	NS	

*Protein, oil, test weight and moisture are NS for all years

Iowa Rolling Research

	NW Iowa		NC Iowa
	2009	2010	2010
Treatment	Yield bu/acre		
Post-plant	64.2	58.8	57.4
1 st trifoliate	65.5	58.2	58.3
3 rd trifoliate			55.7
6 leaves			49.4*
No rolling	64.7	59.8	58.1
LSD (0.05)	NS	NS	5.9

Al-Kaisi et al, ISU

Potential Problems:

- Greater risk for sealing the soil
- Increased wind and water erosion
- Cracked stem may increase disease and lodging issues

Summary

- Plant injury increased with later rolling.
- Population was not significantly affected by treatment.
- Yield was not significantly affected by treatment.
- Seed quality characteristics was not significantly affected by treatment.

Conclusion

- No yield advantage or disadvantage to rolling past emergence up to V3.
- However, risk increases with:
 - Cool, cloudy conditions
 - No-till
 - Wet soil conditions at rolling
 - Rolling direction

Fall Rut Affects on Yield

- Growers observe ~3 year affect from ruts
- 7 fields were GPS'd in Fall 2009
 - Frenchie with Crop One and 4 local growers
 - All but 1 field was CP + SFC
- Ruts vs not rutted areas were flagged-off
- Data and hand harvest w/in the flags

J. DeJong-Hughes, J. Coulter

Spring Rut Research Data

Treatment	Ave. Ht (in.)	Early Pop. (plants/ac)	Growth (V) Stage
No Ruts	31.0	29,900	10.4
Ruts	22.5	28,900	9.1
LSD (0.05)	6.5	NS	0.7

UNIVERSITY OF MINNESOTA | EXTENSION ■ Driven to Discover[™]

Harvest Rut Research Data

Treatment	Final pop. (plants/ac)	Moist (%)	Yield (bu/ac)
No Ruts	29,100	14.9	158.6
Ruts	29,100	15.1	131.3
LSD (0.05)	NS	NS	11.1

Average yield drop was 17% and was very consistent.

One field had a 37% yield decrease. Ruts were on headlands = compaction + ruts (121 vs 77 bu/ac).

Kohl's

Rutted

Questions?

UNIVERSITY OF MINNESOTA | EXTENSION . Driven to Discover[™]