To Bale or Not To Bale?

Sustainable Harvesting of Biomass

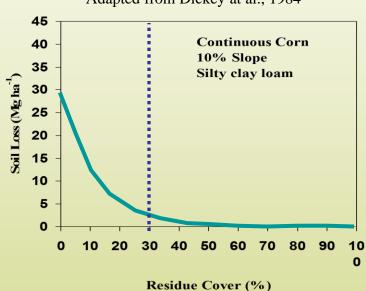
- Benefits
 - Renewable
 - Domestic
 - Reduces release of fossil CO₂
 - Additional farm income

The Purpose of Residue

- Erosion control
 - Buffers soil against the forces of raindrop impact and wind shear
- Input for building SOM
 - C, N, other nutrients
- Biomass removal

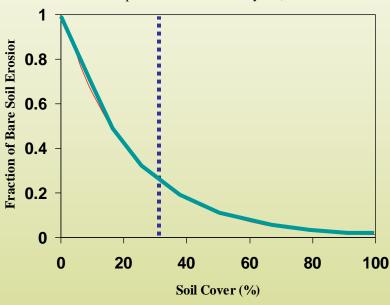
Erosion and Residue

 Residue is the single most important factor influencing soil loss!


- Residue Coverage
 - protects soil from raindrop impact
 - decreases soil detachment
 - decreases soil crusting and sealing
 - decreases velocity of surface water
 - increases infiltration

How Much Residue is Enough?

Water Erosion

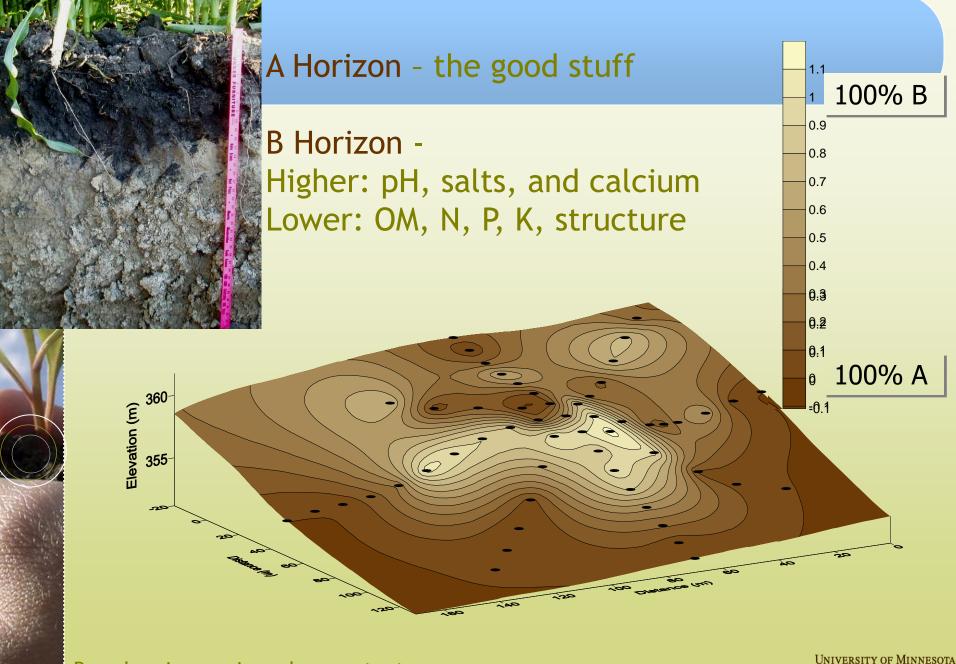

Adapted from Dickey at al., 1984

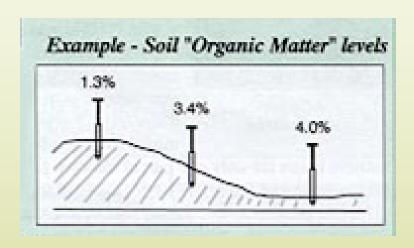
Wind Erosion

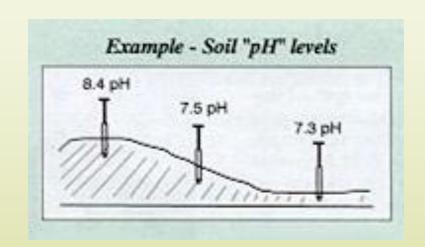
Adapted from Bilbro and Fryrear, 1994

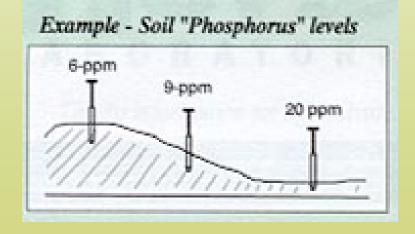
Skogstad Fields - Cyrus, MN

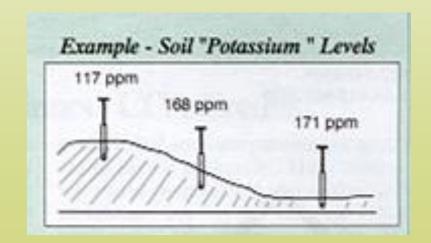
- Looking at water, wind, and tillage erosion
- Long term MBP field



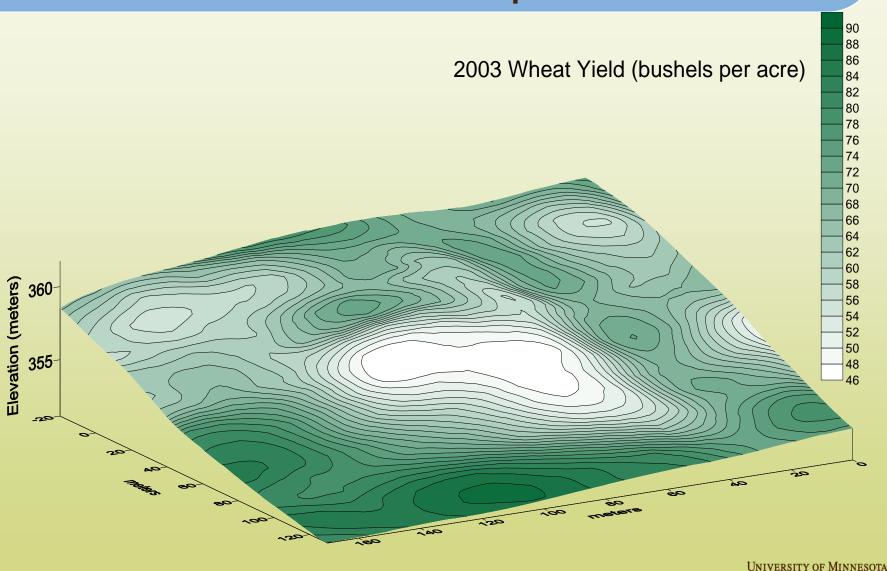

Erosion at Skogstad Site



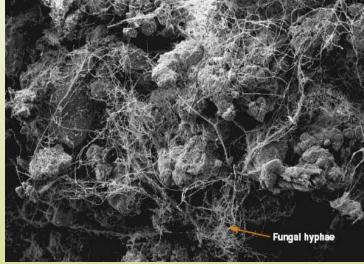

Lindstrom et al, USDA-ARS



Variation in Topography



Variation in Crop Yield



EXTENSION

Aggregate Stability

- Aggregate a natural soil forming body made up of many soil particles held together
- Factors affecting aggregate formation:
 - Microbes, roots, and earthworms
 - Climate (temps and moisture)
 - Tillage

Create Organic Matter By:

- Leaving at least 2.5 tons/ac of residue
- Increasing crop rotation
- Healthy microbial population
- Adding organic inputs
 - perennials
 - livestock and green manure
 - cover or companion crops

Crop Residue Production - MN

ro	
	U

Crop Residue (lb/a)

Corn 160 bu/a	7,950*
Soybean 32 bu/a	1,900*
Wheat 58 bu/a	3,500*
Oats	1,600 - 2,400
Clover -cover crop	900 - 4,900
Oat/rye -cover crop	1,000 - 5,500

^{*} Johnson, Allmaras, Reicosky - Western MN numbers

Carbon Content of Manure

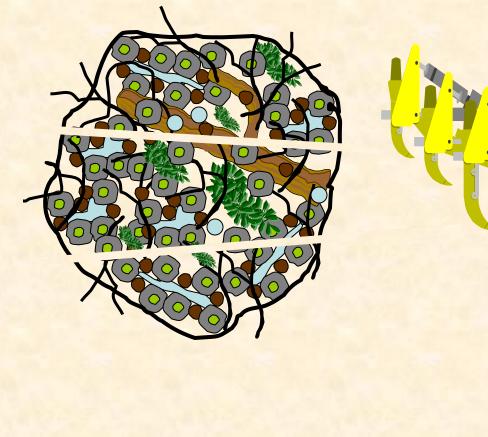
Specie	Liq./Dry	Carbon
Dairy	Dry Liq.	35 #/T 39 #/1000 gal
Beef	Dry	30 #/T
Swine	Liq.	39 #/1000 gal
Poultry	Dry	34 #/T

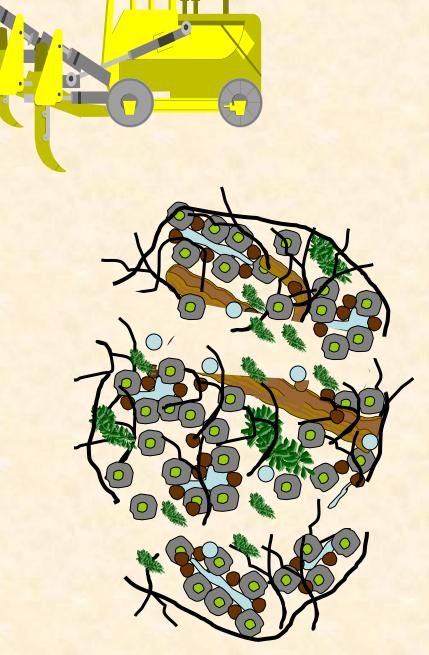
1 large round bale = 1,200 lbs of residue = 600 lbs of Carbon removed

Destroy Organic Matter By:

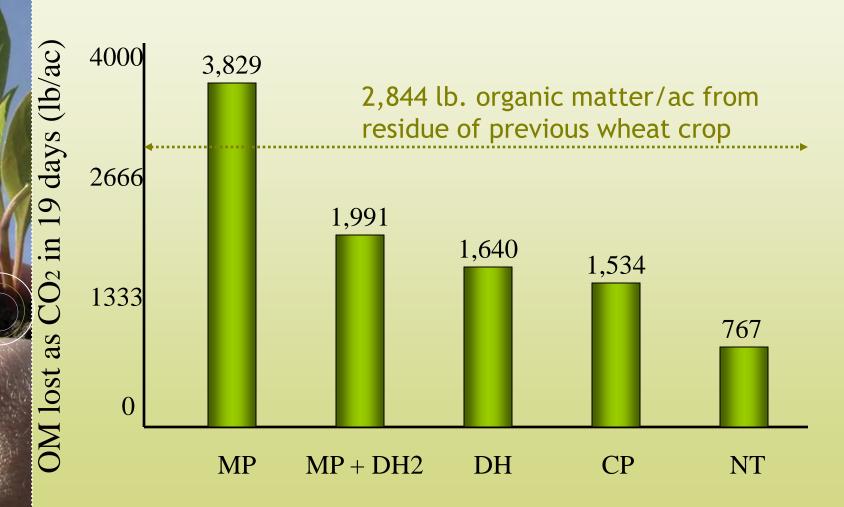
- Loss of Carbon from the system by:
 - Tillage
 - Recreational
 - Aggressive
 - Erosion
 - Fallow
 - Biomass removal

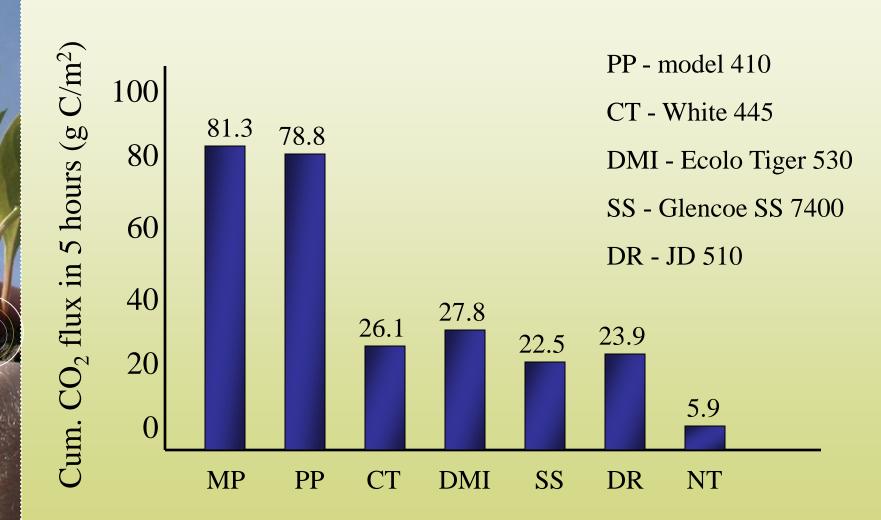
- Reduced microbial activity
 - Minimal habitat
 - Tilled too deep loss of oxygen


Tillage and Microbes


- Buried residue is exposed to greater microbial activity
- Decrease the density of the soil= faster warm-up
- Break-up of soil aggregates exposes organic matter to microbial activity

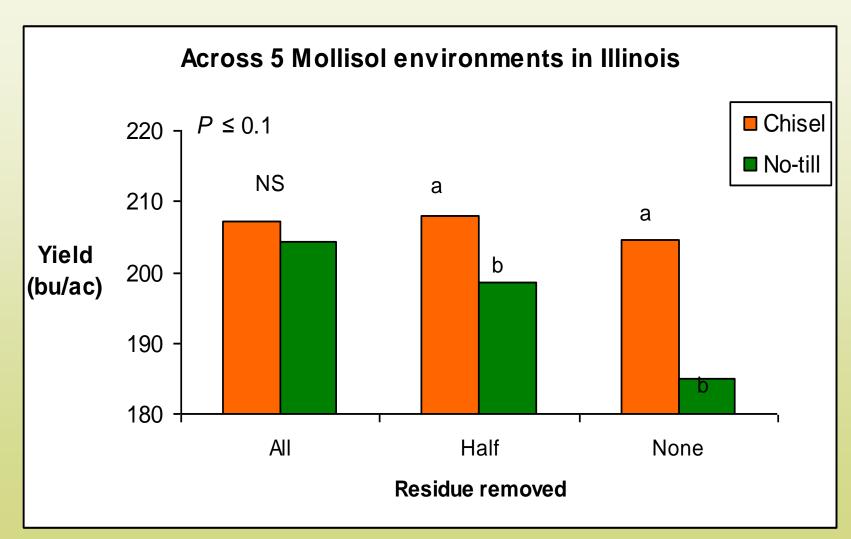
Example: A wood burning stove

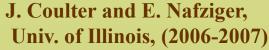



By Maysoon Mikha Kansas State University

19 Day CO₂ Loss From Tillage

Minimum Till Equipment




Factors of Residue Removal

Grain Yield	Corn Residue	Cont. Corn	Cont. Corn	Corn- Soybean	Corn- Soybean
(bu/ac)	YieldMBPCP/NTMBPCP/NT				
100	2.1	0	0	0	0
125	2.6	0	0.5	0	0
150	3.2	0	1.4	0	0
175	3.7	0.5	2.3	0	0
200	4.2	1.4	3.1	0	0.9
225	4.8	2.3	4.0	0	1.8

UNIVERSITY OF MINNESOTA EXTENSION

Corn Yield Response to Residue Removal in Corn after Corn

Cost of Nutrients Removed - Corn

	Nutrient	Dry Ton	
Corn	N (16#) P ₂ O ₅ (5.8#) K ₂ O (40#) Sulfur (3#)	\$14.72 N not available the next growing season \$17.20 \$0.99	

Total

\$36.62 (or \$21.97 per 1,200# bale)

N = \$0.92, P = \$0.64, K = \$0.43, S = \$0.33

Source International Plant Nutrition Institute

Cost of Nutrients Removed - Soybean

	Nutrient	Dry Ton
Soybeans	N (40#) P ₂ O ₅ (8.8#) K ₂ O (47#) Sulfur (6.2#)	\$36.80 N not available the next growing season \$15.91 \$ 2.05

Total

\$60.39 (\$36.23 per 1,200# bale)

$$N = \$0.92, P = \$0.64, K = \$0.43, S = \$0.33$$

Source International Plant Nutrition Institute

Cost of Nutrients Removed - Wheat

K ₂ O (24#) \$	N not available the next growing season 10.32 0.92

Total

\$28.27 (\$16.96 per 1,200# bale)

$$N = \$0.92, P = \$0.64, K = \$0.43, S = \$0.33$$

Source International Plant Nutrition Institute

Corn Cob Removal

- A great compromise would be to harvest only the corn cobs
 - 15-20% of the total residue
 - One pass harvest system
 - Less soil compaction
 - Less fuel
 - Consistent density/energy
 - 37% less nutrients removed
 - Minimal storage spoilage

Corn Cob Removal

The Ceres System includes:

 CleanBoot that attaches to the rear of the combine

- TopTank mounted to the top of the grain hopper
- TopCart, a hybrid

During this fall's corn harvest, the Chippewa Valley Ethanol Company in Berean collected connotes that will be gasified for power in an AURI-supported test project. Potentially, subs from the co-op-members' 108,000 corn acres could provide 75 percent of the ethanol plant's thermal energy.

Corn Cob Nutrient Removal

Nutrient	Lbs/ton Nutrient *		Cost/lb Fertilizer	Cost/ Dry ton
P_2O_5	2.1	X	0.64	\$1.37
K ₂ O	12.5	X	0.43	\$5.38
N	6.7	X	0.92	\$6.16
Total		\$7.75	\$12.91	
		per bale	Per dry ton	
			\$20.98 per corn stover bale	\$36.62 per dry ton of corn stover

Residue Removal Guidelines:

- Use fields that are corn on corn
- Rotate residue harvest among fields
- Reduce tillage following residue harvest
- Add carbon back to the soil
- Consider winter cover crops

Residue Removal

- Should be based on:
 - Tillage to be used
 - Rotation
 - Economics
 - How much is to be removed
 - Whether you want to pass the land on to your kids in good condition

Disk vs. Cultivator

 Cultivator has little down pressure = less destruction of soil structure

 Disk cuts, rotates, shears and has substantial down pressure = destruction of structure

2009 Spring Management

- Soybeans can be no-till, adjust maturities accordingly
- Clay Loams and Corn:
 - Wait as long as possible
 - Chisel plow and stay shallow
 - Simply fill in ruts as best you can
 - Starters
 - Side dress

Spring Residue Management

- Bale residue and remove from field
- Burn select fields
- Preventative planting
- Hope for a dry spring

There is not one easy answer

Questions?

